Geometric similarity invariants of geometric operators

Kui Ji

Joint with Chunlan Jiang

Hebei Normal University

Cowen-Douglas Operators

- Cowen-Douglas Operators
- New class of operators

- Cowen-Douglas Operators
- New class of operators
- Results

- Cowen-Douglas Operators
- New class of operators
- Results
- 4 Reference

Let \mathcal{H} be a complex separable Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of bounded linear operators on \mathcal{H} .

For an open connected subset Ω of the complex plane \mathbb{C} , and $n \in \mathbb{N}$, Cowen and Douglas introduced the class of operators $B_n(\Omega)$ in their Acta paper [1].

Definition $(B_n(\Omega))$

An operator $T \in B_n(\Omega)$ if for each $w \in \Omega$, is an eigenvalue of the operator T of constant multiplicity n, these eigenvectors span the Hilbert space \mathcal{H} and the operator T-w, $w \in \Omega$, is surjective.

It was showed that the map $w \to \ker(T-w)$ is holomorphic and $\pi: E_T \to \Omega,$ where

$$E_T(w) = \{\ker(T - w) : w \in \Omega\}, \pi(\ker(T - w)) = w$$

defines a Hermitian holomorphic vector bundle on Ω .

First of all, we need introduce some complex geometry notations: Let $\xi(\Omega)$ be the algebra consist of the C^{∞} functions and $\xi^p(\Omega)$ denote the p-differential form of C^{∞} functions. Thus we have

$$\xi^{0}(\Omega) = \xi(\Omega), \xi^{1}(\Omega) = \{ fdz + gd\bar{z} : f, g \in \xi(\Omega) \},$$

$$\xi^{2}(\Omega) = \{ fdzd\bar{z}, f \in \xi(\Omega) \}$$

For any vector bundle E which has C^{∞} differential structure, let $\xi^p(\Omega, E)$ denotes p-differential forms with the coefficients in E. Then each element in $\xi^0(\Omega, E)$ is one of sections of E.

Definition (Connection and Curvature)

The connection D can be regarded as a differential operator which maps $\xi^0(\Omega, E)$ to $\xi^1(\Omega, E)$. Let $\sigma \in E(w)$, and $h = ((\langle \sigma_j, \sigma_i \rangle))_{n \times n}$. Then the canonical connection D which keeping the metric and satisfying the following equality:

$$D(\sum_{i=1}^{n} f_{i}\sigma_{i}) = \sum_{i=1}^{n} df_{i} \otimes \sigma_{i} + \sum_{i=1}^{n} \sum_{j=1}^{n} f_{i}\theta_{j,i}\sigma_{j}$$

where $\theta = h^{-1}\partial h$. And

$$D^2 = d\theta + \theta \wedge \theta = \bar{\partial}(h^{-1}\partial h)$$

then $-\bar{\partial}(h^{-1}\partial h)$ is called as the curvature of E denoted by K_E

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Definition (Second fundamental form)

Let $T \in B_2(\Omega)$, and $\sigma_1(w), \sigma_2(w) \in Ker(T-w)$. Applying the Schmidt orthogonal progress to σ_1, σ_2 , then we have e_1, e_2 . Suppose

$$De_1 = D^{1,0}e_1 + D^{0,1}e_2 = \theta_{11}e_1 + \theta_{21}e_2$$

and $De_2 = \theta_{12}e_1 + \theta_{22}e_2$, then $\theta_{12} = \langle De_2, e_1 \rangle$ is called as the second fundamental form of E_T

Questions

Cowen-Douglas' Unitary Classification Theorem

For any $T \in B_n(\Omega)$, when n = 1, the curvature is the completely unitary invariant. When n > 1, then the curvature and it's covariant partial derivatives are the completely unitary invariants

Questions

Cowen-Douglas' Unitary Classification Theorem

For any $T \in B_n(\Omega)$, when n = 1, the curvature is the completely unitary invariant. When n > 1, then the curvature and it's covariant partial derivatives are the completely unitary invariants

Question 1(Similarity of Cowen-Douglas Operators)

For the similarity of Cowen-Douglas operators $A, B \in B_1(\mathbb{D})$, whether $A \sim_s B$ if and only if

$$\lim_{w\to\partial\mathbb{D}}\frac{K_A(w)}{K_B(w)}=1.$$

Or can we use some geometric invariants involving curvature to describe the similarity of Cowen-Douglas operators?

D. N. Clark and G. Misra gave a counter example of this conjecture. Let S_0 be the backward unilateral shift operator and T be a weighted (backward)

shift operator with sequence $\alpha_n=\frac{(\sum\limits_{j=1}^n1/j)^{1/2}}{(\sum\limits_{j=1}^{n+1}1/j)^{1/2}}$ and

$$\frac{K_T}{K_{S_0}} = 1 + [1 - \ln(1 - |w|^2)]^{-1} - |w|^2 [1 - \ln(1 - |w|^2)]^{-2}$$

Then $\frac{K_T}{K_{S_0}} \to 1$, when |w| goes to 1. However, T and S_0 are not similar.

Theorem [D.N.Clark and G.Mirsa] Michigan Math. J. 1983

Let S denote a backward weighted shift operator with weight sequence $\alpha_n = [\frac{(n+1)}{(n+2)}]^{\alpha/2}$ and T is a backward weighted shift operator with $||T|| \leq 1$. Set α_w to be the ratio of the normalized sections of E_S and E_T . Then

Theorem [D.N.Clark and G.Mirsa] Michigan Math. J. 1983

Let S denote a backward weighted shift operator with weight sequence $\alpha_n = [\frac{(n+1)}{(n+2)}]^{\alpha/2}$ and T is a backward weighted shift operator with $||T|| \leq 1$. Set α_w to be the ratio of the normalized sections of E_S and E_T . Then

(i) T is similar to S if and only if α_w is bounded and bounded from 0.

Theorem [D.N.Clark and G.Mirsa] Michigan Math. J. 1983

Let S denote a backward weighted shift operator with weight sequence $\alpha_n = [\frac{(n+1)}{(n+2)}]^{\alpha/2}$ and T is a backward weighted shift operator with $||T|| \leq 1$. Set α_w to be the ratio of the normalized sections of E_S and E_T . Then

- (i) T is similar to S if and only if α_w is bounded and bounded from 0.
- (ii) T is similar to S with $T = XSX^{-1}$, X = U + K where U is unitary and K is compact if and only if α_w tends to a non-zero limit when $|w| \to 1$.

Kehe Zhu's result

In [3], K. Zhu introduced the spanning holomorphic cross-section for Cowen-Douglas operators. Let $T \in B_n(\Omega)$. A holomorphic section of vector bundle E_T is a holomorphic function $\gamma:\Omega\to\mathcal{H}$ such that for each $w\in\Omega$, the vector $\gamma(w)$ belongs to the fibre of E_T over w. We say γ is a spanning holomorphic section for E_T if $\overline{\mathrm{Span}}\ \{\gamma(w):w\in\Omega\}=\mathcal{H}.$

Theorem [K. Zhu] Illinois J. Math. 2000

For any Cowen-Douglas operator $T \in B_n(\Omega)$, E_T has a spanning holomorphic cross-section. Suppose T and \widetilde{T} belongs to $\mathcal{B}_n(\Omega)$, then T and \widetilde{T} are unitarily equivalent (or similarity equivalent) if and only if there exist spanning holomorphic cross-sections γ_T and $\gamma_{\widetilde{T}}$ for E_T and E_S , respectively, such that $\gamma_T \sim_u \gamma_{\widetilde{T}}$ (or $\gamma_T \sim_s \gamma_{\widetilde{T}}$).

R.G.Douglas, S.Treil and H. Kwon's result

Theorem [R.G. Douglas, H. Kwon and S.Treil] J. Lond. Math. Soc. 2013

For $T \in B_m(\mathbb{D})$ that is an *n*-hypercontraction, let $P : \mathbb{D} \to \mathcal{L}(\mathcal{H})$ denote the function whose values are orthogonal projections onto $\ker(T - w)$.

Then T is similar to $\bigoplus S_n^*$ if and only if there exists a bounded subharmonic function ψ defined on $\mathbb D$ such that

$$||\partial P(w)||_2^2 - \frac{mn}{(1-|w|^2)^2} = \Delta \psi(w),$$

R.G.Douglas, S.Treil and H. Kwon's result

Theorem [R.G. Douglas, H. Kwon and S.Treil] J. Lond. Math. Soc. 2013

For $T \in B_m(\mathbb{D})$ that is an *n*-hypercontraction, let $P : \mathbb{D} \to \mathcal{L}(\mathcal{H})$ denote the function whose values are orthogonal projections onto $\ker(T - w)$.

Then T is similar to $\bigoplus S_n^*$ if and only if there exists a bounded subharmonic function ψ defined on $\mathbb D$ such that

$$||\partial P(w)||_2^2 - \frac{mn}{(1-|w|^2)^2} = \Delta \psi(w),$$

Remark[Y. Hou, K. Ji and H. Kwon] Studia Math. 2017

The Hilbert-Schmidt norm $||\partial P(w)||_2^2$ is pointed out to be $-traceK_T$.

Homogeneous operators

In 1984, G. Misra defined a class of homogeneous Cowen-Douglas operators as the following: an operator T is said to be homogeneous if $\phi(T)$ is unitarily equivalent to T for each Möbius transformation ϕ , and he proved the following theorem:

Theorem[G. Misra]Proc. Amer. Math. Soc.1984

Let $T \in B_1(\mathbb{D})$ is a homogenous operator, then T is unitarily equivalent to the adjoint of multiplication operator M_z on the analytic functional space $\mathcal{H}_{\mathcal{K}}$, where $\mathcal{K}(z,w)=\frac{1}{(1-z\bar{w})^{\lambda}}$, for some $\lambda>-1$.

An operator T is said to be weakly homogeneous if $\phi(T)$ is similarity equivalent to T for each Möbius transformation ϕ . A natural question is what is the set of all of the weakly homogeneous operator at least for Cowen-Douglas class?

New class of Cowen-Douglas operators

Inspire of the structure of homogenous Cowen-Douglas operators, we introduced the following new class of operators:

$FB_n(\Omega)$

We let $\mathcal{F}B_n(\Omega)$ be the set of all bounded linear operators \mathcal{T} defined on some complex separable Hilbert space $\mathcal{H} = \mathcal{H}_0 \oplus \cdots \oplus \mathcal{H}_{n-1}$, which are of the form

$$T = \begin{pmatrix} T_0 & S_{0,1} & S_{0,2} & \cdots & S_{0,n-1} \\ 0 & T_1 & S_{1,2} & \cdots & S_{1,n-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & T_{n-2} & S_{n-2,n-1} \\ 0 & \cdots & \cdots & 0 & T_{n-1} \end{pmatrix},$$

where the operator $T_i \in B(\mathcal{H}_i)$ is assumed to be in $B_1(\Omega)$ and $T_iS_{i,i+1} = S_{i,i+1}T_{i+1}, 0 \le i \le n-2$.

Second fundamental form in the case of $FB_2(\Omega)$

The 2×2 block $\begin{pmatrix} T_i & S_{ii+1} \\ 0 & T_{i+1} \end{pmatrix}$ in the decomposition of the operator T in $\mathcal{F}B_2(\mathbb{D})$ because of the intertwining property . Hence the corresponding second fundamental form $\theta_{i,i+1}(T)$ is given by the formula

$$\theta_{i,i+1}(T)(z) = \frac{\mathcal{K}_{T_i}(z) d\bar{z}}{\left(\frac{\|S_{i,i+1}(t_{i+1}(z))\|^2}{\|t_{i+1}(z)\|^2} - \mathcal{K}_{T_i}(z)\right)^{1/2}}.$$
 (2.1)

Remark

For any $T, \widetilde{T} \in FB_n(\Omega)$, when $K_{T_i} = K_{\widetilde{T}_i}$, then

$$\theta_{i,i+1}(T)(z) = \theta_{i,i+1}(\widetilde{T})(z) \Leftrightarrow \frac{\|S_{i,i+1}(t_{i+1}(z))\|}{\|t_{i+1}(z)\|} = \frac{\|\widetilde{S}_{i,i+1}(\widetilde{t}_{i+1}(z))\|}{\|\widetilde{t}_{i+1}(z)\|}$$

So we also use $\frac{\|S_{i,i+1}(t_{i+1}(z))\|}{\|t_{i+1}(z)\|}$ as the second fundamental form $\theta_{i,i+1}(T)$.

Unitarily equivalence of operators in $FB_n(\Omega)$

For the unitarily classification problem of Cowen-Douglas operators, we have the following result:

Theorem 1[Jiang, Ji, Dinesh and Misra] JFA, 2017

Let $T, \widetilde{T} \in FB_n(\Omega)$.

$$T \sim_{u} \widetilde{T} \Leftrightarrow \left\{ egin{array}{l} K_{T_{i}} = K_{\widetilde{T}_{i}} \ heta_{i,i+1}(T) = heta_{i,i+1}(\widetilde{T}) \ rac{\langle S_{i,j}(t_{j}), t_{i}
angle}{\|t_{i}\|^{2}} = rac{\langle \widetilde{S}_{i,j}(\widetilde{t}_{j}), \widetilde{t}_{i}
angle}{\|\widetilde{t}_{i}\|^{2}} \end{array}
ight.$$

Note that numbers of unitarily invariants of common case are n^2 . But together with the curvature and the second fundamental form, we find a set of n(n-1)/2+1 invariants, which are less and easy to compute.

Similarity of operators in $FB_n(\Omega)$

Definition

Let $T \in FB_n(\Omega)$. The operator T is called as quasi-homogeneous operator , i.e. $T \in \mathcal{QB}_n(\Omega)$, if T_i is homogenous operator and

$$S_{i,j}(t_j) \in \bigvee \{t_i^{(k)}, k \leq j-i-1\}.$$

For the similarity classification of Cowen-Douglas operators, we have the following result:

Similarity of operators in $FB_n(\Omega)$

Definition

Let $T \in FB_n(\Omega)$. The operator T is called as quasi-homogeneous operator , i.e. $T \in \mathcal{QB}_n(\Omega)$, if T_i is homogenous operator and

$$S_{i,j}(t_j) \in \bigvee \{t_i^{(k)}, k \leq j-i-1\}.$$

For the similarity classification of Cowen-Douglas operators, we have the following result:

Theorem 2[Jiang, Ji and Misra] JFA,2017

Let $T,S\in\mathcal{QB}_n(\Omega)$, then we have

$$\begin{cases} K_{\mathcal{T}_{i,i}} = K_{\widetilde{\mathcal{T}}_{i,i}} \\ \theta_{i,i+1}(T) = \theta_{i,i+1}(\widetilde{T}) \end{cases} \implies T \sim_s \widetilde{T} \text{ if and only if } T = \widetilde{T}$$

We would like to introduce the following a class of geometric operators denoted by $\mathcal{CFB}_n(\Omega)$.

Definition $(CFB_n(\Omega))$

We would like to introduce the following a class of geometric operators denoted by $\mathcal{CFB}_n(\Omega)$.

Definition $(CFB_n(\Omega))$

A geometric operator T with index n is said to be in $\mathcal{CFB}_n(\Omega)$, if T satisfies the following properties:

(1) T can be written as an $n \times n$ upper-triangular matrix form $((T_{i,j}))_{n \times n}$ under a topological direct decomposition of \mathcal{H} ;

We would like to introduce the following a class of geometric operators denoted by $\mathcal{CFB}_n(\Omega)$.

Definition $(CFB_n(\Omega))$

- (1) T can be written as an $n \times n$ upper-triangular matrix form $((T_{i,j}))_{n \times n}$ under a topological direct decomposition of \mathcal{H} ;
- (2) $diag\{T\} := T_{1,1} \dotplus T_{2,2} \dotplus \cdots \dotplus T_{n,n} \in \{T\}'$, where $\{T\}'$ denotes the commutant of T;

We would like to introduce the following a class of geometric operators denoted by $\mathcal{CFB}_n(\Omega)$.

Definition $(CFB_n(\Omega))$

- (1) T can be written as an $n \times n$ upper-triangular matrix form $((T_{i,j}))_{n \times n}$ under a topological direct decomposition of \mathcal{H} ;
- (2) $diag\{T\} := T_{1,1} \dotplus T_{2,2} \dotplus \cdots \dotplus T_{n,n} \in \{T\}'$, where $\{T\}'$ denotes the commutant of T;
- (3) each entry $T_{i,j} = \phi_{i,j} T_{i,i+1} T_{i+1,i+2} \cdots T_{j-1,j}$, where $\phi_{i,j} \in \{T_{i,i}\}'$;

We would like to introduce the following a class of geometric operators denoted by $\mathcal{CFB}_n(\Omega)$.

Definition $(CFB_n(\Omega))$

- (1) T can be written as an $n \times n$ upper-triangular matrix form $((T_{i,j}))_{n \times n}$ under a topological direct decomposition of \mathcal{H} ;
- (2) $diag\{T\} := T_{1,1} \dotplus T_{2,2} \dotplus \cdots \dotplus T_{n,n} \in \{T\}'$, where $\{T\}'$ denotes the commutant of T;
- (3) each entry $T_{i,j} = \phi_{i,j} T_{i,i+1} T_{i+1,i+2} \cdots T_{j-1,j}$, where $\phi_{i,j} \in \{T_{i,i}\}'$;
- (4) T is a strongly irreducible operator, i.e. there are no nontrivial idempotents in $\{T\}'$.

Definition (Similarity invariant set)

Let $\mathcal{F} = \{A_{\alpha} \in \mathcal{B}(\mathcal{H}), \alpha \in \Lambda\}$. We call \mathcal{F} is a similarity invariant set, if for any invertible operator $X \in \mathcal{B}(\mathcal{H})$,

$$X\mathcal{F}X^{-1} = \{XA_{\alpha}X^{-1} : A_{\alpha} \in \mathcal{F}\} = \mathcal{F}.$$

Definition (Similarity invariant set)

Let $\mathcal{F} = \{A_{\alpha} \in \mathcal{B}(\mathcal{H}), \alpha \in \Lambda\}$. We call \mathcal{F} is a similarity invariant set, if for any invertible operator $X \in \mathcal{B}(\mathcal{H})$,

$$X\mathcal{F}X^{-1} = \{XA_{\alpha}X^{-1} : A_{\alpha} \in \mathcal{F}\} = \mathcal{F}.$$

Definition (Similarity invariant set)

Let $\mathcal{F} = \{A_{\alpha} \in \mathcal{B}(\mathcal{H}), \alpha \in \Lambda\}$. We call \mathcal{F} is a similarity invariant set, if for any invertible operator $X \in \mathcal{B}(\mathcal{H})$,

$$X\mathcal{F}X^{-1} = \{XA_{\alpha}X^{-1} : A_{\alpha} \in \mathcal{F}\} = \mathcal{F}.$$

Proposition

 $\mathcal{CFB}_n(\Omega)$ is a similarity invariant set

Definition (Similarity invariant set)

Let $\mathcal{F} = \{A_{\alpha} \in \mathcal{B}(\mathcal{H}), \alpha \in \Lambda\}$. We call \mathcal{F} is a similarity invariant set, if for any invertible operator $X \in \mathcal{B}(\mathcal{H})$,

$$X\mathcal{F}X^{-1} = \{XA_{\alpha}X^{-1} : A_{\alpha} \in \mathcal{F}\} = \mathcal{F}.$$

Proposition

 $\mathcal{CFB}_n(\Omega)$ is a similarity invariant set

Remark

The set of homogenous operators in Cowen-Douglas class is not a similarity invariant set.

Similarity orbit Theorem(Special case, Apostol, Fialkow, Herrero, and Voiculescu)

Let T and $S \in B_n(\Omega)$, and spectral pictures of T and S be the same. Then there exist two sequences of invertible operators $\{X_n\}_{n=1}^{\infty}$ and $\{Y_n\}_{n=1}^{\infty}$ such that

$$\lim_{n\to\infty} X_n A X_n^{-1} = B, \lim_{n\to\infty} Y_n B Y_n^{-1} = A.$$

Notice that $\mathcal{CFB}_n(\Omega)$ is a similarity invariant set, by using the similarity orbit theorem, we can prove that

Similarity orbit Theorem(Special case, Apostol, Fialkow, Herrero, and Voiculescu)

Let T and $S \in B_n(\Omega)$, and spectral pictures of T and S be the same. Then there exist two sequences of invertible operators $\{X_n\}_{n=1}^{\infty}$ and $\{Y_n\}_{n=1}^{\infty}$ such that

$$\lim_{n\to\infty} X_n A X_n^{-1} = B, \lim_{n\to\infty} Y_n B Y_n^{-1} = A.$$

Notice that $\mathcal{CFB}_n(\Omega)$ is a similarity invariant set, by using the similarity orbit theorem, we can prove that

Theorem

 $\mathcal{CFB}_n(\Omega)$ is norm dense in $B_n(\Omega)$.

Definition

Let $T_1, T_2 \in \mathcal{L}(\mathcal{H})$. Define a Rosenblum operator $\sigma_{T_1, T_2} : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})$ as

$$\sigma_{T_1,T_2}(X) = T_1X - XT_2, \forall X \in \mathcal{L}(\mathcal{H}),$$

and a Rosenblum operator $\sigma_{\mathcal{T}_1}:\mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})$ as

$$\sigma_{T_1}(X) = T_1X - XT_1, \forall X \in \mathcal{L}(\mathcal{H}).$$

Definition

Let $T_1, T_2 \in \mathcal{L}(\mathcal{H})$. Define a Rosenblum operator $\sigma_{T_1, T_2} : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})$ as

$$\sigma_{T_1,T_2}(X) = T_1X - XT_2, \forall X \in \mathcal{L}(\mathcal{H}),$$

and a Rosenblum operator $\sigma_{\mathcal{T}_1}:\mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})$ as

$$\sigma_{T_1}(X) = T_1X - XT_1, \forall X \in \mathcal{L}(\mathcal{H}).$$

Definition (Property H)

Let $T \in \mathcal{CFB}_n(\Omega)$. We call T satisfies the Property (H) if and only if the following statements hold: If $Y \in B(\mathcal{H}_j, \mathcal{H}_i)$ satisfies

Then Y=0. That is equivalent to $ker\sigma_{T_{i,i},T_{i+1,i+1}}\cap ran\sigma_{T_{i,i},T_{i+1,i+1}}=\{0\}.$

Definition

Let $T_1, T_2 \in \mathcal{L}(\mathcal{H})$. Define a Rosenblum operator $\sigma_{T_1, T_2} : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})$ as

$$\sigma_{T_1,T_2}(X) = T_1X - XT_2, \forall X \in \mathcal{L}(\mathcal{H}),$$

and a Rosenblum operator $\sigma_{\mathcal{T}_1}:\mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})$ as

$$\sigma_{T_1}(X) = T_1X - XT_1, \forall X \in \mathcal{L}(\mathcal{H}).$$

Definition (Property H)

Let $T \in \mathcal{CFB}_n(\Omega)$. We call T satisfies the Property (H) if and only if the following statements hold: If $Y \in B(\mathcal{H}_j, \mathcal{H}_i)$ satisfies

(i)
$$T_{i,i}Y = YT_{i+1,i+1}$$
,

Then Y = 0. That is equivalent to $\ker \sigma_{T_{i,i},T_{i+1,i+1}} \cap \operatorname{ran}\sigma_{T_{i,i},T_{i+1,i+1}} = \{0\}$.

Definition

Let $T_1, T_2 \in \mathcal{L}(\mathcal{H})$. Define a Rosenblum operator $\sigma_{T_1, T_2} : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})$ as

$$\sigma_{T_1,T_2}(X) = T_1X - XT_2, \forall X \in \mathcal{L}(\mathcal{H}),$$

and a Rosenblum operator $\sigma_{\mathcal{T}_1}:\mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})$ as

$$\sigma_{T_1}(X) = T_1X - XT_1, \forall X \in \mathcal{L}(\mathcal{H}).$$

Definition (Property H)

Let $T \in \mathcal{CFB}_n(\Omega)$. We call T satisfies the Property (H) if and only if the following statements hold: If $Y \in B(\mathcal{H}_j, \mathcal{H}_i)$ satisfies

- (i) $T_{i,i}Y = YT_{i+1,i+1}$,
- (ii) $Y = T_{i,j}Z ZT_{i+1,i+1}$, for some $Z, i < j = 1, \dots, n$.

Then Y=0. That is equivalent to $ker\sigma_{T_{i,i},T_{i+1,i+1}}\cap ran\sigma_{T_{i,i},T_{i+1,i+1}}=\{0\}.$

Proposition

Let $T_1, T_2 \in \mathcal{L}(\mathcal{H})$ and S_2 be the right inverse of T_2 . If $\lim_{n \to \infty} \frac{\|T_1^n\| \cdot \|S_2^n\|}{n} = 0$, then the Property (H) holds i.e. If there exists $X \in \mathcal{L}(\mathcal{H})$ such that $T_1X = XT_2$ and $X = T_1Y - YT_2$ for some Y, then X = 0.

Proposition

Let $T_1, T_2 \in \mathcal{L}(\mathcal{H})$ and S_2 be the right inverse of T_2 . If $\lim_{n \to \infty} \frac{\|T_1^n\| \cdot \|S_2^n\|}{n} = 0$, then the Property (H) holds i.e. If there exists $X \in \mathcal{L}(\mathcal{H})$ such that $T_1X = XT_2$ and $X = T_1Y - YT_2$ for some Y, then X = 0.

Example

Let $A, B \in B_1(\mathbb{D})$ be backward shift operators with weighted sequences

$$\{a_i\}_{i=1}^{\infty}$$
 and $\{b_i\}_{i=1}^{\infty}$. If $\lim_{n\to\infty} n\frac{\prod\limits_{k=1}^{n}b_k}{\prod\limits_{k=1}^{n}a_k}=\infty$, then the Property (H) holds.

Definition

We call $T \sim_{U+K} S$, if there exists a unitary operator U and a compact operator K such that U + K is invertible and (U + K)T = S(U + K).

Definition

We call $T \sim_{U+K} S$, if there exists a unitary operator U and a compact operator K such that U+K is invertible and (U+K)T=S(U+K).

Lemma

Let $T,S \in B_1(\mathbb{D})$, where $S \sim_u (M_z^*, \mathcal{H}_{\mathcal{K}_S}, \mathcal{K}_S)$, then we have

$$T \sim_{U+K} S \Leftrightarrow K_S - K_T = \Delta In\phi,$$

where ϕ is a bounded function with

$$\phi(w) = 1 + \frac{\sum_{i=1}^{m} 2Ref_i(w)\bar{g}_i(w) + \sum_{i=1}^{m} |g_i(w)|^2}{K_S(w, w)},$$

where m is the rank of K and $\{f_i\}_{i=1}^m, \{g_i\}_{i=1}^m \in \mathcal{H}_{\mathcal{K}_S}$ are orthogonal sets, $||f_i|| = 1, ||g_i|| \to 0$. When $K_S \ge K_T$, then $In\phi$ is subharmonic.

Proposition

Let $A, B \in B_1(\mathbb{D})$ be backward weighted shift operators with weighted sequences $\{a_k\}_{k=1}^{\infty}$ and $\{b_k\}_{k=1}^{\infty}$ respectively. Then the following statements are equivalent:

Proposition

Let $A, B \in B_1(\mathbb{D})$ be backward weighted shift operators with weighted sequences $\{a_k\}_{k=1}^{\infty}$ and $\{b_k\}_{k=1}^{\infty}$ respectively. Then the following statements are equivalent:

(i) $A \sim_s B$ implies $A \sim_{U+K} B$,

Proposition

Let $A, B \in B_1(\mathbb{D})$ be backward weighted shift operators with weighted sequences $\{a_k\}_{k=1}^{\infty}$ and $\{b_k\}_{k=1}^{\infty}$ respectively. Then the following statements are equivalent:

- (i) $A \sim_s B$ implies $A \sim_{U+K} B$,
- (ii) $\lim_{n\to\infty} \frac{\prod\limits_{k=1}^{n} a_k}{\prod\limits_{k=1}^{n} b_k}$ exists and is not equal to zero.

Similarity involving U + K

Main Theorem 1 [Jiang and Ji]

Let $T, \widetilde{T} \in CFB_n(\Omega)$. Suppose the following statements hold

then we have

$$T \sim_s \widetilde{T} \Leftrightarrow \left\{ egin{array}{l} K_{\mathcal{T}_i} - K_{\widetilde{\mathcal{T}}_i} = \Delta In\phi_i \ rac{\phi_i}{\phi_{i+1}} heta_{i,i+1}(\mathcal{T}) = heta_{i,i+1}(\widetilde{\mathcal{T}}) \end{array}
ight.$$

where ϕ_i are the bounded subharmonic functions in the Lemma above.

Similarity involving U + K

Main Theorem 1 [Jiang and Ji]

Let $T, \widetilde{T} \in CFB_n(\Omega)$. Suppose the following statements hold (1) T and \widetilde{T} satisfy the Property (H);

then we have

$$T \sim_s \widetilde{T} \Leftrightarrow \left\{ egin{array}{l} K_{\mathcal{T}_i} - K_{\widetilde{\mathcal{T}}_i} = \Delta \ln \phi_i \\ rac{\phi_i}{\phi_{i+1}} \theta_{i,i+1}(\mathcal{T}) = \theta_{i,i+1}(\widetilde{\mathcal{T}}) \end{array}
ight.$$

where ϕ_i are the bounded subharmonic functions in the Lemma above.

Similarity involving U + K

Main Theorem 1 [Jiang and Ji]

Let $T, \widetilde{T} \in CFB_n(\Omega)$. Suppose the following statements hold

- (1) T and \tilde{T} satisfy the Property (H);
- (2) $T_{i,i} \sim_s \tilde{T}_{i,i}$ implies $T_{i,i} \sim_{U+K} \tilde{T}_{i,i}$

then we have

$$T \sim_{s} \widetilde{T} \Leftrightarrow \left\{ \begin{array}{l} K_{\mathcal{T}_{i}} - K_{\widetilde{\mathcal{T}}_{i}} = \Delta In\phi_{i} \\ rac{\phi_{i}}{\phi_{i+1}} \theta_{i,i+1}(\mathcal{T}) = \theta_{i,i+1}(\widetilde{\mathcal{T}}) \end{array} \right.$$

where ϕ_i are the bounded subharmonic functions in the Lemma above.

Strongly Property (H)

Definition (Strongly Property (H))

Let $T \in \mathcal{CFB}_n(\Omega)$. We call T satisfies the strongly property (H) if and only if the following statements hold: If $Y \in B(\mathcal{H}_j, \mathcal{H}_i)$ satisfies

Then Y = 0. That is equivalent to $ker \sigma_{T_{i,i},T_{i,j}} \cap ran \sigma_{T_{i,i},T_{i,j}} = \{0\}$.

Strongly Property (H)

Definition (Strongly Property (H))

Let $T \in \mathcal{CFB}_n(\Omega)$. We call T satisfies the strongly property (H) if and only if the following statements hold: If $Y \in \mathcal{B}(\mathcal{H}_i, \mathcal{H}_i)$ satisfies

(i)
$$T_{i,i}Y = YT_{j,j}$$
,

Then Y=0. That is equivalent to $\ker \sigma_{T_{i,i},T_{j,j}} \cap \operatorname{ran}\sigma_{T_{i,i},T_{j,j}} = \{0\}.$

Strongly Property (H)

Definition (Strongly Property (H))

Let $T \in \mathcal{CFB}_n(\Omega)$. We call T satisfies the strongly property (H) if and only if the following statements hold: If $Y \in \mathcal{B}(\mathcal{H}_j, \mathcal{H}_i)$ satisfies

- (i) $T_{i,i}Y = YT_{j,j}$,
- (ii) $Y = T_{i,j}Z ZT_{j,j}$, for some $Z, i < j = 1, \dots, n$.

Then Y = 0. That is equivalent to $\ker \sigma_{T_{i,i},T_{i,i}} \cap \operatorname{ran}\sigma_{T_{i,i},T_{i,i}} = \{0\}$.

Main Theorem 2

Main Theorem 2 [Jiang and Ji]

Let $T = ((T_{i,j}))_{n \times n}$ and $\tilde{T} = ((\tilde{T}_{i,j}))_{n \times n}$ be any two operators in $\mathcal{CFB}_n(\Omega)$, where $T_{i,j} = \tilde{T}_{i,j} = 0, i > j$. Suppose that T satisfies the strongly property (H). Then we have

$$T \sim_s \widetilde{T} \Leftrightarrow \left\{ \begin{array}{l} X_i T_{i,i} = \widetilde{T}_{i,i} X_i, \\ X_i T_{i,j} = \widetilde{T}_{i,j} X_j, i = 1, 2, \cdots, n \end{array} \right.$$

where $X_i \in \mathcal{L}(\mathcal{H}_i, \tilde{\mathcal{H}}_i), i = 1, 2, \cdots, n$ are invertible operators.

Application

In the following theorem, Soumitra Ghara give a way to decide when an operator $T \in \mathcal{FB}_2(\mathbb{D})$ to be a weakly homogeneous operator.

Theorem (S. Ghara, Thesis, IISC, 2018)

Let $1 \leq \lambda \leq \mu \leq \lambda + 2$ and ψ be a non-zero function in $C(\bar{\mathbb{D}}) \cap Hol(\mathbb{D})$. The operator $T = \begin{pmatrix} M_z^* & M_\psi^* \\ 0 & M_z^* \end{pmatrix}$ on $\mathcal{H}^{(\lambda)} \oplus \mathcal{H}^{(\mu)}$ is weakly homogeneous if and only if ψ is non-vanishing on $\bar{\mathbb{D}}$.

Although the description of the weakly homogeneous operators in $\mathcal{FB}_2(\mathbb{D})$ is more or less clear. However, the computation will become very difficult with the growth of the rank n.

Application

Thus, in general case, we need the intertwining operator between T and $\phi_{\alpha}(T), \alpha \in \mathbb{D}$ could be diagonal. That means we need to consider the operators in $\mathcal{CFB}_n(\mathbb{D})$ which satisfy the strongly Property (H). In the end of this talk, we will show that there also exists a lot examples of non-weakly homogeneous operators in $\mathcal{CFB}_n(\mathbb{D})$

Theorem 3[Jiang and Ji]

Let $T = \begin{pmatrix} T_{1,1} & T_{1,2} & T_{1,3} \\ 0 & T_{2,2} & T_{2,3} \\ 0 & 0 & T_{3,3} \end{pmatrix} \in \mathcal{CFB}_3(\mathbb{D})$. If T satisfies the strongly Property (H), then T is not weakly homogeneous.

Email: jikui@hebtu.edu.cn jikuikui@163.com Hebei Normal University

M. J. Cowen and R. G. Douglas, *Complex geometry and operator theory*, Acta Math. 141 (1978), 187–261.

M. J. Cowen and R. G. Douglas, *Complex geometry and operator theory*, Acta Math. 141 (1978), 187–261.

D. N. Clark and G. Misra, *On curvature and similarity*, Michigan Math. J. **30**(1983), no. 3, 361-367.

D. N. Clark and G. Misra, *On weighted shifts, curvature and similarity,* J. London Math. Soc.,(2) 31(1985), 357 - 368.

- M. J. Cowen and R. G. Douglas, *Complex geometry and operator theory*, Acta Math. 141 (1978), 187–261.
- D. N. Clark and G. Misra, *On curvature and similarity*, Michigan Math. J. **30**(1983), no. 3, 361-367.
- D. N. Clark and G. Misra, *On weighted shifts, curvature and similarity,* J. London Math. Soc.,(2) 31(1985), 357 368.
- R. Curto and N. Salinas, *Generalized Bergman kernels and the Cowen-Douglas theory.* Amer. J. Math. 106 (1984), no. 2, 447–488.

- M. J. Cowen and R. G. Douglas, *Complex geometry and operator theory*, Acta Math. 141 (1978), 187–261.
- D. N. Clark and G. Misra, *On curvature and similarity*, Michigan Math. J. **30**(1983), no. 3, 361-367.
- D. N. Clark and G. Misra, On weighted shifts, curvature and similarity, J. London Math. Soc., (2) 31(1985), 357 368.
- R. Curto and N. Salinas, Generalized Bergman kernels and the Cowen-Douglas theory. Amer. J. Math. 106 (1984), no. 2, 447–488.
- R. G. Douglas, *Operator theory and complex geometry,* Extracta Math. 24 (2009), no. 2, 135-165.

R. G. Douglas, H. Kwon, and S. Treil, *Similarity of Operators in the Bergman Space Setting*, J. Lond. Math. Soc., 88 (2013), no. 3, 637-648.

- R. G. Douglas, H. Kwon, and S. Treil, *Similarity of Operators in the Bergman Space Setting*, J. Lond. Math. Soc., 88 (2013), no. 3, 637-648.
 - R. G. Douglas, G. Misra and C. Varughese, *On quotient modules the case of arbitrary multiplicity*, J. Funct. Anal. 174 (2000), no. 2, 364-398.
 - R. G. Douglas and G. Misra, *Equivalence of quotient Hilbert modules*. *II.*, Trans. Amer. Math. Soc. 360 (2008), no. 4, 2229-2264.

- R. G. Douglas, H. Kwon, and S. Treil, *Similarity of Operators in the Bergman Space Setting*, J. Lond. Math. Soc., 88 (2013), no. 3, 637-648.
- R. G. Douglas, G. Misra and C. Varughese, *On quotient modules the case of arbitrary multiplicity*, J. Funct. Anal. 174 (2000), no. 2, 364-398.
- R. G. Douglas and G. Misra, *Equivalence of quotient Hilbert modules*. *II.*, Trans. Amer. Math. Soc. 360 (2008), no. 4, 2229-2264.
- P. R. Halmos, *Ten problems in Hilbert space*, Bull. Amer. Math. Soc., 76 (1970) 887-933.

- R. G. Douglas, H. Kwon, and S. Treil, *Similarity of Operators in the Bergman Space Setting*, J. Lond. Math. Soc., 88 (2013), no. 3, 637-648.
- R. G. Douglas, G. Misra and C. Varughese, *On quotient modules the case of arbitrary multiplicity*, J. Funct. Anal. 174 (2000), no. 2, 364-398.
- R. G. Douglas and G. Misra, *Equivalence of quotient Hilbert modules*. *II.*, Trans. Amer. Math. Soc. 360 (2008), no. 4, 2229-2264.
- P. R. Halmos, *Ten problems in Hilbert space*, Bull. Amer. Math. Soc., 76 (1970) 887-933.
- P. R. Halmos, *A Hilbert space problem book*, (Second edition) Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982.

G. H. Hardy and J. E. Littlewood, *Tauberian Theorems Concerning Power Series and Dirichlet's Series whose Coefficients are Positive*, Proc. London Math. Soc., 13 (1914), 174 – 191

G. H. Hardy and J. E. Littlewood, *Tauberian Theorems Concerning Power Series and Dirichlet's Series whose Coefficients are Positive*, Proc. London Math. Soc., 13 (1914), 174 – 191

C. Jiang, Similarity, reducibility and approximation of the Cowen-Douglas operators. J. Operator Theory 32 (1994), no. 1, 77–89.

C. Jiang, Similarity classification of Cowen-Douglas operators. Canad. J. Math. **56** (4) (2004), 742–775.

- G. H. Hardy and J. E. Littlewood, *Tauberian Theorems Concerning Power Series and Dirichlet's Series whose Coefficients are Positive*, Proc. London Math. Soc., 13 (1914), 174 191
- C. Jiang, Similarity, reducibility and approximation of the Cowen-Douglas operators. J. Operator Theory 32 (1994), no. 1, 77–89.
- C. Jiang, Similarity classification of Cowen-Douglas operators. Canad. J. Math. **56** (4) (2004), 742–775.
- K. Ji, C. Jiang, D. K. Keshari and G. Misra Flag structure for operators in the Cowen-Douglas class, Comptes rendus Mathématique, 352 (2014), 511–514.

- G. H. Hardy and J. E. Littlewood, *Tauberian Theorems Concerning Power Series and Dirichlet's Series whose Coefficients are Positive*, Proc. London Math. Soc., 13 (1914), 174 191
- C. Jiang, Similarity, reducibility and approximation of the Cowen-Douglas operators. J. Operator Theory 32 (1994), no. 1, 77–89.
- C. Jiang, Similarity classification of Cowen-Douglas operators. Canad. J. Math. **56** (4) (2004), 742–775.
- K. Ji, C. Jiang, D. K. Keshari and G. Misra Flag structure for operators in the Cowen-Douglas class, Comptes rendus Mathématique, 352 (2014), 511–514.
- K. Ji, C. Jiang, D. K. Keshari and G. Misra Rigidity of the flag structure for a class of Cowen-Douglas operators, preprint.

C. Jiang and K. Ji, *Similarity classification of holomorphic curves*. Adv. Math. **215** (2) (2007), 446-468.

C. Jiang and K. Ji, *Similarity classification of holomorphic curves*. Adv. Math. **215** (2) (2007), 446-468.

C. Jiang, X. Guo and K. Ji, *K-group and similarity classification of operators*, J. Funct. Anal., 225 (2005), 167-192.

C. Jiang, X. Guo and K. Ji, *K-group and similarity classification of operators*, J. Funct. Anal., 225 (2005), 167-192.

C. Jiang and Z. Wang, *Strongly irreducible operators on Hilbert space*. Pitman Research Notes in Mathematics Series, 389. Longman, Harlow, 1998. x+243 pp. ISBN: 0-582-30594-2.

- C. Jiang and K. Ji, *Similarity classification of holomorphic curves*. Adv. Math. **215** (2) (2007), 446-468.
- C. Jiang, X. Guo and K. Ji, *K-group and similarity classification of operators*, J. Funct. Anal., 225 (2005), 167-192.
- C. Jiang and Z. Wang, *Strongly irreducible operators on Hilbert space*. Pitman Research Notes in Mathematics Series, 389. Longman, Harlow, 1998. x+243 pp. ISBN: 0-582-30594-2.
- C. Jiang and Z. Wang, The spectral picture and the closure of the similarity orbit of strongly irreducible operators, Integral Equations Operator Theory 24 (1996), no. 1, 81-105.

- C. Jiang and K. Ji, *Similarity classification of holomorphic curves*. Adv. Math. **215** (2) (2007), 446-468.
- C. Jiang, X. Guo and K. Ji, *K-group and similarity classification of operators*, J. Funct. Anal., 225 (2005), 167-192.
- C. Jiang and Z. Wang, *Strongly irreducible operators on Hilbert space*. Pitman Research Notes in Mathematics Series, 389. Longman, Harlow, 1998. x+243 pp. ISBN: 0-582-30594-2.
- C. Jiang and Z. Wang, The spectral picture and the closure of the similarity orbit of strongly irreducible operators, Integral Equations Operator Theory 24 (1996), no. 1, 81-105.
- S. Kobayashi, *Differential geometry of complex vector bundles*, Publications of the Mathematical Society of Japan, 15. Kanô Memorial Lectures, 5. Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987.

H. Kwon and S. Treil, *Similarity of operators and geometry of eigenvector bundles*, Publ. Mat. 53. (2009), 417-438.

H. Kwon and S. Treil, *Similarity of operators and geometry of eigenvector bundles*, Publ. Mat. 53. (2009), 417-438.

A. Korányi and G. Misra, *A classification of homogeneous operators in the Cowen-Douglas class*, Adv. Math., 226 (2011) 5338-5360.

A. Korányi and G. Misra, *Multiplicity-free homogeneous operators in the Cowen-Douglas class*. Perspectives in mathematical sciences. II, 83-101, Stat. Sci. Interdiscip. Res., 8, World Sci. Publ., Hackensack, NJ, 2009.

- H. Kwon and S. Treil, *Similarity of operators and geometry of eigenvector bundles*, Publ. Mat. 53. (2009), 417-438.
- A. Korányi and G. Misra, A classification of homogeneous operators in the Cowen-Douglas class, Adv. Math., 226 (2011) 5338-5360.
- A. Korányi and G. Misra, *Multiplicity-free homogeneous operators in the Cowen-Douglas class.* Perspectives in mathematical sciences. II, 83-101, Stat. Sci. Interdiscip. Res., 8, World Sci. Publ., Hackensack, NJ, 2009.
- G. Misra, , *Curvature and the backward shift operators*, Proc. Amer. Math. Soc. 91 (1984), no. 1, 105-107.

G. Pisier, A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc., 10 (1997), 351-369.

- M. Rordam, F. Larsen and N. J. Laustsen *An Introduction to K-Theory for C*-Algebras*. Cambridge University press (2000).
- Pit-Mann Wong and W. Stoll, *On Holomorphic Jet Bundles*, arXiv:math/0003226v1, 2000.

A. L. Shields, Weighted Shift Operators And Analytic Function Theory, Mathematical Survey, 13(1974) 49-128.

- A. L. Shields, Weighted Shift Operators And Analytic Function Theory, Mathematical Survey, 13(1974) 49-128.
- M. Spivak, A Comprehensive introduction to differential geometry (Volume 3). Publish or Perish. ISBN 0-914098-72-1.
- K. Zhu, Operators in Cowen-Douglas classes. Illinois J. Math. 44 (2000), no. 4, 767-783.