Some Monge-Ampère equations with degeneracy or singularities

Tianling Jin

HKUST

Conference on geometric analysis and nonlinear PDEs, Harbin Institute of Technology, May 2019

$$\det
abla^2 u = 1$$
 in \mathbb{R}^n

$$\det
abla^2 u = 1$$
 in \mathbb{R}^n

must be a 2nd order polynomial.

• Jörgens (1954): n = 2 using complex analysis;

$$\det
abla^2 u = 1$$
 in \mathbb{R}^n

must be a 2nd order polynomial.

▶ Jörgens (1954): n = 2 using complex analysis;
 ▶ Calabi (1958): 3 ≤ n ≤ 5;

$$\det
abla^2 u = 1$$
 in \mathbb{R}^n

- Jörgens (1954): n = 2 using complex analysis;
- ► Calabi (1958): 3 ≤ n ≤ 5;
- ▶ Pogorelov (1972): n ≥ 6;

$$\det
abla^2 u = 1$$
 in \mathbb{R}^n

- Jörgens (1954): n = 2 using complex analysis;
- ► Calabi (1958): 3 ≤ n ≤ 5;
- ▶ Pogorelov (1972): n ≥ 6;
- Cheng-Yau: a proof arising from affine geometry;

$$\det
abla^2 u = 1$$
 in \mathbb{R}^n

- ▶ Jörgens (1954): n = 2 using complex analysis;
- ► Calabi (1958): 3 ≤ n ≤ 5;
- ▶ Pogorelov (1972): n ≥ 6;
- Cheng-Yau: a proof arising from affine geometry;
- Caffarelli: viscosity solutions.

Trudinger-Wang('00): the only convex open subset Ω of ℝⁿ which admits a convex C² solution of det ∇²u = 1 in Ω with

$$\lim_{x\to\partial\Omega}u(x)=\infty$$

is $\Omega = \mathbb{R}^n$;

► Caffarelli-Li ('03): if

$$\det \nabla^2 u = 1 \quad \text{in } \mathbb{R}^n \setminus \Omega,$$

then there exist $c \in \mathbb{R}, b \in \mathbb{R}^n, A \in \mathcal{M}_{n \times n}$ s.t.

$$u(x) - (\frac{1}{2}x^T A x + b \cdot x + c) = O(|x|^{2-n}).$$

► Caffarelli-Li ('03): if

$$\det \nabla^2 u = 1 \quad \text{in } \mathbb{R}^n \setminus \Omega,$$

then there exist $c \in \mathbb{R}, b \in \mathbb{R}^n, A \in \mathcal{M}_{n \times n}$ s.t.

$$u(x) - (\frac{1}{2}x^T A x + b \cdot x + c) = O(|x|^{2-n}).$$

Ferrer-Martínez-Milán ('00) for n = 2 (with an extra $\log \sqrt{x^T A X}$ term).

► Caffarelli-Li ('04): if

$$\det \nabla^2 u = f \quad \text{in } \mathbb{R}^n$$

where f is periodic Hölder continuous, then there exist $b \in \mathbb{R}^n, A \in \mathcal{M}_{n \times n}$ s.t.

$$u(x) - (\frac{1}{2}x^T A x + b \cdot x)$$
 is periodic (same as f).

► Caffarelli-Li ('04): if

$$\det \nabla^2 u = f \quad \text{in } \mathbb{R}^n$$

where f is periodic Hölder continuous, then there exist $b \in \mathbb{R}^n, A \in \mathcal{M}_{n \times n}$ s.t.

$$u(x) - (\frac{1}{2}x^T A x + b \cdot x)$$
 is periodic (same as f).

 D. Li-Z.Li-Yuan ('17), D. Li-Z. Li('18), for special Lagrangian equations, half space, etc. Jörgens (1955) showed that every smooth locally convex solution of

$$\det \nabla^2 u = 1 \quad \text{in } \mathbb{R}^2 \setminus \{0\}$$

Jörgens (1955) showed that every smooth locally convex solution of

$$\det \nabla^2 u = 1 \quad \text{in } \mathbb{R}^2 \setminus \{0\}$$

has to be

$$u_c = \int_0^{|x|} (\tau^2 + c)^{\frac{1}{2}} d\tau, \quad c \ge 0.$$

(modulo the unimodular affine equivalence.)

Jörgens (1955) showed that every smooth locally convex solution of

$$\det \nabla^2 u = 1 \quad \text{in } \mathbb{R}^2 \setminus \{0\}$$

has to be

$$u_c = \int_0^{|x|} (\tau^2 + c)^{\frac{1}{2}} d\tau, \quad c \ge 0.$$

(modulo the unimodular affine equivalence.)

0 is non-removable singular point of u_c if and only if c > 0.

We extended this to higher dimensions:

We extended this to higher dimensions:

Theorem (J-Xiong '12)

Let u be a generalized solution of

$$\det \nabla^2 u = 1 \quad in \ \mathbb{R}^n \setminus \{0\}.$$

Then u must be

$$\int_0^{|x|} (\tau^n + c)^{\frac{1}{n}} \,\mathrm{d}\tau$$

for some $c \ge 0$ (modulo the unimodular affine equivalence).

Next, local solutions to

$$\det \nabla^2 u = 1 \text{ in } B_1 \setminus \{0\}.$$

Next, local solutions to

$$\det \nabla^2 u = \lim B_1 \setminus \{0\}.$$

Describe the asymptotic behavior of u near the non-removable singularity $\{0\}$.

Let $\Gamma \subset \subset \Omega$ be either a point or a straight line segment. If a convex $u \in C^2(\Omega \setminus \Gamma)$ satisfies

 $\det \nabla^2 u = 1 \text{ in } \Omega \setminus \Gamma,$

then

$$|\nabla^2 u(x)| \leq \frac{C}{dist(x,\Gamma)}.$$

Let $\Gamma \subset \subset \Omega$ be either a point or a straight line segment. If a convex $u \in C^2(\Omega \setminus \Gamma)$ satisfies

 $\det \nabla^2 u = 1 \text{ in } \Omega \setminus \Gamma,$

then

$$|\nabla^2 u(x)| \leq \frac{C}{dist(x,\Gamma)}.$$

Remark: The rate is optimal (the isolated singularity case):

•
$$\int_0^{|x|} (\tau^n + 1)^{\frac{1}{n}} d\tau$$
 is of this rate.

Let $\Gamma \subset \subset \Omega$ be either a point or a straight line segment. If a convex $u \in C^2(\Omega \setminus \Gamma)$ satisfies

 $\det \nabla^2 u = 1 \text{ in } \Omega \setminus \Gamma,$

then

$$|\nabla^2 u(x)| \leq \frac{C}{dist(x,\Gamma)}.$$

Remark: The rate is optimal (the isolated singularity case):

•
$$\int_0^{|x|} (\tau^n + 1)^{\frac{1}{n}} d\tau$$
 is of this rate.

 If |∇²u(x)| = O(dist(x, Γ)^{-α}) for α ∈ (0, 1), then by Schulz-Wang, the singularity is removable.

Regularity:

Theorem

Let Ω be a bounded convex domain, $0 < \lambda \leq \Lambda < \infty$ and $\Gamma \subset \subset \Omega$. Let $u \in C(\overline{\Omega})$ be a generalized convex solution of

$$\begin{split} \lambda &\leq {\rm det} \nabla^2 u \leq \Lambda \qquad \mbox{in } \Omega \setminus \Gamma, \\ u &= 0 \qquad \mbox{on } \partial \Omega. \end{split}$$

Then u is locally strictly convex in $\Omega \setminus C(\Gamma)$, where $C(\Gamma)$ is the convex hull of Γ .

An open question: regularity for two isolated singularities.

An open question: regularity for two isolated singularities.

Let u be a convex generalized solution of

$$\begin{split} \lambda &\leq {\rm det} \nabla^2 u \leq \Lambda \qquad \text{in } \Omega \setminus \{P_1, P_2\}, \\ u &= 0 \qquad \text{ on } \partial \Omega. \end{split}$$

We know *u* is strictly convex in $\Omega \setminus \overline{P_1P_2}$.

An open question: regularity for two isolated singularities.

Let u be a convex generalized solution of

$$\begin{split} \lambda &\leq {\rm det} \nabla^2 u \leq \Lambda \qquad \text{in } \Omega \setminus \{P_1, P_2\}, \\ u &= 0 \qquad \text{ on } \partial \Omega. \end{split}$$

We know *u* is strictly convex in $\Omega \setminus \overline{P_1P_2}$.

Question:

Is *u* strictly convex in $\Omega \setminus \{P_1, P_2\}$?

Existence and uniqueness:

Theorem (J-Xiong '12)

Let μ be a locally finite Borel measure s.t. the support of $(\mu - 1)$ is bounded. Then for every $c \in \mathbb{R}$, $b \in \mathbb{R}^n$, $A \in \mathcal{M}_{n \times n}$ s.t. A > 0, det A = 1, there exists a unique convex solution of

$$\det \nabla^2 u = \mu \quad \text{in } \mathbb{R}^n$$
$$\lim_{|x| \to +\infty} |u(x) - (\frac{1}{2}x^T A x + b \cdot x + c)| = 0.$$

Existence and uniqueness:

Theorem (J-Xiong '12)

Let μ be a locally finite Borel measure s.t. the support of $(\mu - 1)$ is bounded. Then for every $c \in \mathbb{R}$, $b \in \mathbb{R}^n$, $A \in \mathcal{M}_{n \times n}$ s.t. A > 0, det A = 1, there exists a unique convex solution of

$$\det \nabla^2 u = \mu \quad \text{in } \mathbb{R}^n$$
$$\lim_{|x| \to +\infty} |u(x) - (\frac{1}{2}x^T A x + b \cdot x + c)| = 0.$$

Remark: If $d\mu = f(x)dx$ for some $f \in C(\mathbb{R}^n)$ satisfying supp(f-1) is bounded and $\inf_{\mathbb{R}^n} f > 0$, then this was proved in Caffarelli-Li.

Brandolini, Nitsch, Salani and Trombetti extended Serrin's over derterminate result to $\sigma_k(\nabla^2 u)$: whenever Ω is a bounded smooth domain, and ν is the outer normal of $\partial\Omega$, if $u \in C^2(\overline{\Omega})$ is a solution of

$$\begin{cases} \sigma_k(\nabla^2 u) = \binom{n}{k} & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \\ \partial u/\partial \nu = 1 & \text{ on } \partial\Omega \end{cases}$$

with $k = 1, 2, \dots, n$, then after some translation Ω has to the unit ball and $u = \frac{|x|^2 - 1}{2}$.

We show that

Theorem (J-Xiong '12)

Let Ω be a bounded smooth domain in \mathbb{R}^n with $n \ge 2$. If there exists a locally convex function $u \in C^1(\mathbb{R}^n \setminus \Omega) \cap C^2(\mathbb{R}^n \setminus \overline{\Omega})$ satisfying

$$egin{array}{ll} \det
abla^2 u = 1 & \mbox{ in } \mathbb{R}^n \setminus \overline{\Omega} \ u = 0 & \mbox{ on } \partial\Omega, \ \partial u / \partial
u = 0 & \mbox{ on } \partial\Omega, \end{array}$$

where ν is the unit outer normal of $\partial \Omega$, then Ω has to be an ellipsoid.

We show that

Theorem (J-Xiong '12)

Let Ω be a bounded smooth domain in \mathbb{R}^n with $n \ge 2$. If there exists a locally convex function $u \in C^1(\mathbb{R}^n \setminus \Omega) \cap C^2(\mathbb{R}^n \setminus \overline{\Omega})$ satisfying

$$egin{pmatrix} \det
abla^2 u = 1 & \mbox{in } \mathbb{R}^n \setminus \overline{\Omega}, \ u = 0 & \mbox{on } \partial\Omega, \ \partial u / \partial
u = 0 & \mbox{on } \partial\Omega, \end{split}$$

where ν is the unit outer normal of $\partial \Omega$, then Ω has to be an ellipsoid.

Remark: Not much is know for Serrin's problem in exterior domains (even assuming quadratic growth at infinity).

Degenerated Monge-Ampère equation

$$\det \nabla^2 u(x_1, x_2) = |x_1|^{\alpha} \quad \text{in } \mathbb{R}^2.$$

The equation

$$\det \nabla^2 u(x_1, x_2) = |x_1|^{\alpha} \quad \text{in } \mathbb{R}^2$$

appears, for instance, as a blowup limiting equation of

$$\det \nabla^2 u(x_1, x_2) = (x_1^2 + x_2^2)^{\alpha/2} \quad \text{in } B_1 \tag{1}$$

in Daskalopoulos-Savin in the study of the Weyl problem with nonnegative Gauss curvature.

The equation

$$\det \nabla^2 u(x_1, x_2) = |x_1|^{\alpha} \quad \text{in } \mathbb{R}^2$$

appears, for instance, as a blowup limiting equation of

$$\det \nabla^2 u(x_1, x_2) = (x_1^2 + x_2^2)^{\alpha/2} \quad \text{in } B_1 \tag{1}$$

in Daskalopoulos-Savin in the study of the Weyl problem with nonnegative Gauss curvature.

They showed that the solution of (1) near 0 is either

• radial (
$$\sim |x|^{2+\frac{lpha}{2}}$$
), or

• nonradial (~
$$c_1|x_1|^{2+\alpha} + c_2|x_2|^2 + h.o.t.$$
).

Let u be a convex generalized solution of

$$\det \nabla^2 u(x_1, x_2) = |x_1|^{lpha}$$
 in \mathbb{R}^2

with $\alpha > -1$. Then there exist some constants a > 0, b and a linear function $\ell(x_1, x_2)$ such that

$$u(x_1, x_2) = \frac{a}{(\alpha + 2)(\alpha + 1)} |x_1|^{2+\alpha} + \frac{ab^2}{2} x_1^2 + bx_1 x_2 + \frac{1}{2a} x_2^2 + \ell(x_1, x_2).$$

Regularity:

We needed to show that every solution of

$$\det
abla^2 u(x_1, x_2) = |x_1|^{lpha}$$
 in \mathbb{R}^2

is strictly convex, so that $u \in C^{1,\delta}_{loc}(\mathbb{R}^2)$ and is smooth away from $\{x_1=0\}.$

Regularity:

We needed to show that every solution of

$$\det \nabla^2 u(x_1, x_2) = |x_1|^{\alpha} \quad \text{in } \mathbb{R}^2$$

is strictly convex, so that $u \in C^{1,\delta}_{loc}(\mathbb{R}^2)$ and is smooth away from $\{x_1 = 0\}.$

However, we have examples showing that it is not the case for local equations with $\alpha > 0$:

$$\det \nabla^2 u(x_1, x_2) = |x_1|^{\alpha} \quad \text{in } B_1.$$

(Write $u(x) = |x_1|^{\frac{2+\alpha}{2}} w(x_2)$ and solve for w).

Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T(x_1, x_2) = (x_1, \nabla_{x_2} u(x)) =: (p_1, p_2).$$

T is injective. The partial Legendre transform $u^*(p)$ is

$$u^{*}(p) = x_{2} \nabla_{x_{2}} u(x) - u(x).$$

Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T(x_1, x_2) = (x_1, \nabla_{x_2} u(x)) =: (p_1, p_2).$$

T is injective. The partial Legendre transform $u^*(p)$ is

$$u^{*}(p) = x_2 \nabla_{x_2} u(x) - u(x).$$

Then

• u^* is concave w.r.t. p_1 and convex w.r.t. p_2 ;

Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T(x_1, x_2) = (x_1, \nabla_{x_2} u(x)) =: (p_1, p_2).$$

T is injective. The partial Legendre transform $u^*(p)$ is

$$u^{*}(p) = x_2 \nabla_{x_2} u(x) - u(x).$$

Then

*u** is concave w.r.t. *p*₁ and convex w.r.t. *p*₂;
 (*u**)* = *u*;

Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T(x_1, x_2) = (x_1, \nabla_{x_2} u(x)) =: (p_1, p_2).$$

T is injective. The partial Legendre transform $u^*(p)$ is

$$u^{*}(p) = x_2 \nabla_{x_2} u(x) - u(x).$$

Then

• u^* is concave w.r.t. p_1 and convex w.r.t. p_2 ;

•
$$(u^*)^* = u;$$

• $u_{11}^* + |p_1|^{\alpha} u_{22}^* = 0$ in $T(\mathbb{R}^2).$

Step 1: Prove

$$T(\mathbb{R}^2) = \mathbb{R}^2.$$

Hence

$$u_{11}^* + |p_1|^{\alpha} u_{22}^* = 0$$
 in \mathbb{R}^2 .

Step 1: Prove

$$T(\mathbb{R}^2) = \mathbb{R}^2.$$

Hence

$$u_{11}^* + |p_1|^{\alpha} u_{22}^* = 0$$
 in \mathbb{R}^2 .

Let $v = u_{22}^* \ge 0$. Then

$$v_{11} + |p_1|^{\alpha} v_{22} = 0$$
 in \mathbb{R}^2 .

Step 2: The equation

$$v_{11} + |p_1|^{lpha} v_{22} = 0$$
 in \mathbb{R}^2

satisfies the Harnack inequality, and thus $v = u_{22}^*$ has to be a constant.

Step 2: The equation

$$v_{11} + |p_1|^{lpha} v_{22} = 0$$
 in \mathbb{R}^2

satisfies the Harnack inequality, and thus $v=u_{22}^{\ast}$ has to be a constant. So

$$u_{22}^* \equiv a, u_{11}^* \equiv -a|p_1|^{\alpha}, u_{112}^* = u_{122}^* = 0, u_{12}^* = b.$$

Proof of Harnack for

$$v_{11} + |p_1|^{\alpha} v_{22} = 0, \quad \alpha > -1.$$

Proof of Harnack for

$$v_{11} + |p_1|^{\alpha} v_{22} = 0, \ \alpha > -1.$$

Let

$$\phi(x_1, x_2) = |x_1|^{2+\alpha} + x_2^2$$
 in \mathbb{R}^2 .

Then

$$\begin{split} (\nabla^2 \phi)^{1/2} &= \left(\begin{array}{cc} \sqrt{(2+\alpha)(1+\alpha)} |x_1|^{\alpha/2} & 0\\ 0 & \sqrt{2} \end{array} \right),\\ \det \nabla^2 \phi &= 2(\alpha+2)(\alpha+1) |x_1|^{\alpha}. \end{split}$$

Proof of Harnack for

$$v_{11} + |p_1|^{\alpha} v_{22} = 0, \quad \alpha > -1.$$

Let

$$\phi(x_1, x_2) = |x_1|^{2+\alpha} + x_2^2$$
 in \mathbb{R}^2 .

Then

$$\begin{split} (\nabla^2 \phi)^{1/2} &= \left(\begin{array}{cc} \sqrt{(2+\alpha)(1+\alpha)} |x_1|^{\alpha/2} & 0\\ 0 & \sqrt{2} \end{array} \right),\\ \det \nabla^2 \phi &= 2(\alpha+2)(\alpha+1) |x_1|^{\alpha}. \end{split}$$

Note: $|x_1|^{\alpha}$ is A_{∞} if $\alpha > -1$.

Let

$$A(x_1, x_2) = \left(\begin{array}{cc} |x_1|^{-\alpha} & 0\\ 0 & 1\end{array}\right).$$

Then

$$B := (\nabla^2 \phi)^{1/2} \cdot A \cdot (\nabla^2 \phi)^{1/2} = \begin{pmatrix} (2+\alpha)(1+\alpha) & 0 \\ 0 & 2 \end{pmatrix} > 0$$

 $\text{ if } \alpha > -1. \\$

Let

$$A(x_1, x_2) = \left(\begin{array}{cc} |x_1|^{-\alpha} & 0\\ 0 & 1\end{array}\right).$$

Then

$$B := (\nabla^2 \phi)^{1/2} \cdot A \cdot (\nabla^2 \phi)^{1/2} = \begin{pmatrix} (2+\alpha)(1+\alpha) & 0 \\ 0 & 2 \end{pmatrix} > 0$$

if $\alpha > -1$. Therefore, we can apply Caffarelli-Gutiérrez's Harnack inequality for linearized Monge-Ampère equations to

$$v_{11} + |p_1|^{\alpha} v_{22} = Tr(A\nabla^2 v) = 0, \ \alpha > -1.$$

Proof of $T(\mathbb{R}^2) = \mathbb{R}^2$ (recall $T(x_1, x_2) = (x_1, \nabla_{x_2} u(x)))$.

Proof of $T(\mathbb{R}^2) = \mathbb{R}^2$ (recall $T(x_1, x_2) = (x_1, \nabla_{x_2} u(x))$). We prove it by contradiction. Suppose that there exists \bar{x}_1 s.t.

$$\lim_{x_2\to\infty}u_2(\bar{x}_1,x_2):=\beta<\infty.$$

Then

$$\lim_{x_2\to\infty}u_2(x_1,x_2)=\beta \text{ for every } x_1\in\mathbb{R}.$$

Proof of $T(\mathbb{R}^2) = \mathbb{R}^2$ (recall $T(x_1, x_2) = (x_1, \nabla_{x_2} u(x))$). We prove it by contradiction. Suppose that there exists \bar{x}_1 s.t.

$$\lim_{x_2\to\infty}u_2(\bar{x}_1,x_2):=\beta<\infty.$$

Then

$$\lim_{x_2\to\infty}u_2(x_1,x_2)=\beta \text{ for every } x_1\in\mathbb{R}.$$

We assume $\beta = 1$. Therefore,

$$\mathcal{T}(\mathbb{R}^2) = (-\infty,\infty) imes (eta_0,1) ext{ for some } -\infty \leq eta_0 < 1.$$

Recall

$$egin{aligned} T(x_1,x_2) &= (x_1,
abla_{x_2}u(x)) =: (p_1,p_2).\ T(\mathbb{R}^2) &= (-\infty,\infty) imes (eta_0,1) ext{ for some } -\infty \leq eta_0 < 1. \end{aligned}$$

Since T is one-to-one and $u_2^*(p_1, p_2) = x_2$, we have

$$\lim_{p_2\to 1^-}u_2^*(p_1,p_2)=\infty.$$

Recall

$$egin{aligned} T(x_1,x_2) &= (x_1,
abla_{x_2}u(x)) =: (p_1,p_2).\ T(\mathbb{R}^2) &= (-\infty,\infty) imes (eta_0,1) ext{ for some } -\infty \leq eta_0 < 1. \end{aligned}$$

Since T is one-to-one and $u_2^*(p_1, p_2) = x_2$, we have

$$\lim_{p_2\to 1^-}u_2^*(p_1,p_2)=\infty.$$

Use continuity and monotonicity of u_2^* , we have

$$\lim_{(p_1,p_2)\to(\bar{p}_1,1)}u_2^*(p_1,p_2)=+\infty \,\,\forall \,\,\bar{p}_1\in\mathbb{R}.$$

Recall

$$\begin{split} \mathcal{T}(x_1, x_2) &= (x_1, \nabla_{x_2} u(x)) =: (p_1, p_2). \\ \mathcal{T}(\mathbb{R}^2) &= (-\infty, \infty) \times (\beta_0, 1) \text{ for some } -\infty \leq \beta_0 < 1. \end{split}$$

Since T is one-to-one and $u_2^*(p_1, p_2) = x_2$, we have

$$\lim_{p_2\to 1^-}u_2^*(p_1,p_2)=\infty.$$

Use continuity and monotonicity of u_2^* , we have

$$\lim_{(p_1,p_2)\to(\bar{p}_1,1)}u_2^*(p_1,p_2)=+\infty \,\,\forall \,\,\bar{p}_1\in\mathbb{R}.$$

Use comparison principle and the equation of u_2^* to show that this is impossible.

THANK YOU!