© XXXX Society for Industrial and Applied Mathematics

SIAM J. NUMER. ANAL.
 Vol. 0, No. 0, pp. 000-000

DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR SCALAR CONSERVATION LAWS: GENERALIZED LOCAL LAX-FRIEDRICHS NUMERICAL FLUXES*

⁶ JIA LI[†], DAZHI ZHANG[†], XIONG MENG[‡], BOYING ^{WU[†]}, AND QIANG ZHANG[§]

Abstract. In this paper, we study the discontinuous Galerkin method with a class of generalized numerical fluxes for one-dimensional scalar nonlinear conservation laws. The generalized local Lax-8 Friedrichs (GLLF) fluxes with two weights, which may not be monotone, are proposed and analyzed. Under a condition for the weights, we first show the monotonicity for the flux and thus the L^2 10 stability of the scheme. Then, by constructing and analyzing a special piecewise global projection 11 which commutes with the time derivative operator, we are able to show optimal error estimates for 12 the DG scheme with GLLF fluxes. The result is sharp for monotone numerical fluxes, for which 13 14 only suboptimal estimates can be proved in previous work. Moreover, optimal error estimates are still valid for fluxes that are not monotone, allowing us to choose some suitable weights to achieve 15 less numerical dissipation and thus to better resolve shocks. Numerical experiments are provided to 16 show the sharpness of theoretical results. 17

Key words. nonlinear conservation laws, discontinuous Galerkin methods, generalized local
 Lax-Friedrichs fluxes, optimal error estimates

AMS subject classifications. 65M12, 65M15, 65M60

21 **DOI.** 10.1137/19M1243798

1. Introduction. In this paper, we concentrate on discontinuous Galerkin (DG)
 methods with generalized local Lax-Friedrichs (GLLF) fluxes for one-dimensional
 scalar nonlinear hyperbolic conservation laws

25 (1.1a) $u_t + f(u)_x = 0,$ $(x,t) \in I \times (0,T],$

$$u(x,0) = u_0(x), \quad x \in I,$$

where $u_0(x)$ is a smooth function and I = [a, b]. The nonlinear function f(u) is assumed to be sufficiently smooth with respect to u. Note that the GLLF flux is in a more general setting of the local Lax-Friedrichs (LLF) flux, which is not even monotone and can be regarded as an extension of upwind-biased fluxes when f(u) is linear [20]. The L^2 stability and optimal error estimates are obtained for the GLLF fluxes with two suitable weights. The periodic boundary conditions are considered.

The DG method discussed in this paper is a class of finite element methods, which was first introduced by Reed and Hill [23] for solving a steady-state linear hyperbolic

^{*}Received by the editors February 11, 2019; accepted for publication (in revised form) October 29, 2019; published electronically DATE.

https://doi.org/10.1137/19M1243798

Funding: The work of the first and third authors was supported by National Natural Science Foundation of China grant 11501149. The work of the second author was supported by National Key Research and Development Program in China grant 2017YFB1401801 and National Natural Science Foundation of China grant 71773024. The work of the fifth author was supported by National Natural Science Foundation of China grants 11671199 and 11571290.

[†]School of Mathematics, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China (jli@hit.edu.cn, zhangdazhi@hit.edu.cn, mathwby@hit.edu.cn).

[‡]Corresponding author. School of Mathematics and Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China (xiongmeng@hit.edu.cn).

[§]Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu, China (qzh@ nju.edu.cn).

³⁶ equation and was developed by Cockburn and Shu [12] for time-dependent nonlinear
³⁷ conservation laws. For the time discretization, the explicit total variation diminishing
³⁸ (TVD) Runge-Kutta method [15] is usually adopted. We refer to the survey paper

³⁹ [25] for recent development of DG methods for time-dependent problems.

As is well known, the numerical flux is the most important ingredient in designing 40 DG schemes, since it determines many features of DG methods such as the stability 41 and accuracy. Typically, for nonlinear scalar conservation laws, the numerical fluxes 42 are chosen as monotone fluxes, and L^2 stability [16] and a suboptimal error estimate 43 of order $k + \frac{1}{2}$ are obtained for the fully discrete scheme combined with third order 44 TVD Runge–Kutta methods in [26]. Moreover, when upwind numerical flux is used, 45 the optimal error estimate of order k + 1 is proved [26]. For general stabilized finite 46 47 element methods for linear symmetric hyperbolic systems, a suboptimal error estimate of order $k + \frac{1}{2}$ is obtained for the space-time methods [13] and for the Runge-Kutta 48 DG methods [4]. Throughout the paper, k is the highest polynomial degree of the 49 discontinuous finite element space. 50

To provide more flexibility in numerical viscosity with potential applications to 51 52 complex systems, the numerical fluxes are recently chosen in a general pattern. Specifically, for DG approximation to linear spatial derivative terms, some generalized nu-53 merical fluxes containing one weight are used. For example, the upwind-biased fluxes 54 are considered for linear hyperbolic equations [20], and the central flux for nonlinear 55 convection term in combination with generalized alternating fluxes for linear diffu-56 sion term are used for the Burgers–Poisson equation [18]. Moreover, the general-57 ized numerical fluxes with two independent weights are given in [9] for solving linear 58 convection-diffusion equations. It is worth emphasizing that, for generalized numer-59 ical fluxes, optimal error estimates can be derived by virtue of some special global 60 projections, which is motivated by the work of [2]. There is some other work related 61 to DG methods with generalized fluxes; see, for example, superconvergence of DG 62 methods with upwind-biased fluxes for one-dimensional linear hyperbolic equations 63 [5], and the local error estimate of local DG methods with generalized alternating 64 fluxes for singularly perturbed problems [10]. In addition, motivated by [1], a class 65 of $\alpha\beta$ -fluxes can be proved to be of order k+1 for one-dimensional two-way wave 66 equations in [8] and for linear high order equations in [14] by constructing some *local* 67 and *global* projections. The generalized numerical fluxes for direct DG methods for 68 diffusion problems can be found in [7, 19]. 69

How to extend the optimal error analysis of generalized numerical fluxes from 70 linear derivative terms to nonlinear ones is of current interest. It thus would be 71 meaningful to investigate a class of generalized fluxes for nonlinear conservation laws 72 in terms of the GLLF flux, which is a modification of LLF fluxes with two weights 73 representing different numerical viscosities; see (2.2a) and (2.2b) below. Following 74 the idea of *piecewise global* projections for degenerate variable coefficient hyperbolic 75 equations in [17], to minimize the leading term of projection error terms for nonlin-76 ear conservation laws we construct a special *piecewise global* projection depending 77 only on two weights and u. The resulting projection is a linear operator for u and 78 thus commutes with the time derivative operator. Although the wind direction can 79 be changed, the *piecewise global* projection allows us to establish the optimal ap-80 proximation property and we need only to pay attention to regions with fixed wind 81 direction, as in the cell on which f'(u) does change its sign, f'(u) itself is of order h. 82 Therefore, by a linearization approach for nonlinear flux functions [26, 21], optimal 83

⁸⁴ error estimates are obtained for GLLF fluxes.

To the best of our knowledge, this is the first proof of optimal error estimates of the 85 DG scheme with LLF type and generalized numerical flux when nonlinear conservation 86 laws are considered. In this work, the theoretical results not only provide a sharp error 87 estimate for *monotone* fluxes but also establish optimal error estimates for fluxes that 88 are not monotone. In addition to the improvement of theoretical analysis, the GLLF 89 flux contributes a lot in practical computation for its better solution in resolving 90 shocks (see Example 4.1). 91

The organization of this paper is as follows. In section 2, the DG scheme with 92 GLLF fluxes for one-dimensional nonlinear scalar conservation laws is presented and 93 the monotonicity is discussed. In section 3, by designing and analyzing a special 94 *piecewise global* projection, optimal error estimates are obtained under the condition 95 $\lambda > |\theta|$. In section 4, numerical experiments are shown, which confirm the sharpness 96 of optimal error estimates and verify the numerical stability of the DG scheme with 97 nonmonotone GLLF fluxes. Concluding remarks are given in section 5. 98

2. The DG scheme with GLLF fluxes. Let us start by presenting some 99 notation for the mesh, function space, and norms. 100

2.1. Basic notation. The usual notation of DG methods is adopted. The com-101 putational interval I = [a, b] is divided into N cells $I_j = (x_{j-\frac{1}{n}}, x_{j+\frac{1}{n}})$ for $j = 1, \ldots, N$, 102 where $a = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \cdots < x_{N+\frac{1}{2}} = b$ and cell center is $x_j = \frac{1}{2}(x_{j-\frac{1}{2}} + x_{j+\frac{1}{2}})$, and the 103 tessellation of I is denoted as $\mathcal{I}_{h} = \{I_{j}\}_{j=1}^{N}$. Denote by $h_{j} = x_{j+\frac{1}{2}} - x_{j-\frac{1}{2}}$ the mesh 104 size with $h = \max_j h_j$. \mathcal{I}_h is assumed to be quasi-uniform in the sense that there 105 holds $\nu h \leq h_j \leq h$ (j = 1, ..., N) for a fixed positive constant ν , as h goes to zero. 106

The discontinuous finite element space is chosen as 107

$$V_h^k = \{ \omega : \omega | _{I_j} \in P^k(I_j), \ j = 1, \dots, N \},$$

where $P^k(I_j)$ is the space of polynomials of degree up to k on I_j . Since $\omega \in V_h^k$ can be discontinuous at cell interfaces, we denote by $\omega_{j+\frac{1}{2}}^-$ and $\omega_{j+\frac{1}{2}}^+$ the values of 109 110 ω at $x_{j+\frac{1}{2}}$ from the left cell I_j and the right cell I_{j+1} , respectively. Further, the 111 jump and the mean value of ω at cell boundaries are denoted as $\llbracket \omega \rrbracket = \omega^+ - \omega^-$ and 112 $\{\!\!\{\omega\}\!\!\} = \frac{1}{2}(\omega^+ + \omega^-).$ 113

We use $W^{\ell,p}(\Omega)$ (e.g., $\Omega = I_j$) to represent the standard Sobolev space on Ω 114 equipped with norm $\|\cdot\|_{W^{\ell,p}(\Omega)}$, where $\ell \geq 0, 1 \leq p \leq \infty$ are integers. Then the 115 broken Sobolev space on \mathcal{I}_h is denoted as 116

$$W^{\ell,p}(\mathcal{I}_h) = \{ u \in L^2(I) : u | _{I_j} \in W^{\ell,p}(I_j), \ j = 1, \dots, N \},$$

and the norms are denoted as $\|u\|_{W^{\ell,\infty}(\mathcal{I}_h)} = \max_{1 \leq j \leq N} \|u\|_{W^{\ell,\infty}(I_j)}, \|u\|_{W^{\ell,p}(\mathcal{I}_h)} =$ 118 $(\sum_{j=1}^{N} \|u\|_{W^{\ell,p}(I_j)}^p)^{1/p}$ for $p \neq \infty$. The notation $H^{\ell}(\mathcal{I}_h) = W^{\ell,2}(\mathcal{I}_h), L^2(I) = H^0(\mathcal{I}_h)$, and $L^{\infty}(I) = W^{0,\infty}(\mathcal{I}_h)$ is adopted. In addition, the boundary norms are denoted as 119 120 $||u||_{L^{2}(\Gamma_{\mathbf{h}})}^{2} = \sum_{i=1}^{N} ||u||_{L^{2}(\partial I_{i})}^{2}$ and $||u||_{L^{2}(\partial I_{i})}^{2} = (u_{i-\frac{1}{2}}^{+})^{2} + (u_{i+\frac{1}{2}}^{-})^{2}$. 121

2.2. The DG scheme. For nonlinear conservation laws (1.1), the DG scheme 122 is as follows: $\forall t \in (0,T]$, find $u_h(t) \in V_h^k$ such that for any $v_h \in V_h^k$ and $j = 1, \ldots, N$ 123 there holds 124

(2.1)
$$\int_{I_j} (u_h)_t v_h dx - \int_{I_j} f(u_h)(v_h)_x dx + \hat{f}_{j+\frac{1}{2}}(v_h)_{j+\frac{1}{2}}^- - \hat{f}_{j+\frac{1}{2}}(v_h)_{j-\frac{1}{2}}^+ = 0.$$

 $_{126}$ $\,$ Instead of using monotone fluxes, we consider the following GLLF fluxes that may

127 not be monotone (2.2a)

$$\hat{f}(u_{h}^{+}, u_{h}^{+}) = \left(\frac{1}{2} + \theta\right) f(u_{h}^{-}) + \left(\frac{1}{2} - \theta\right) f(u_{h}^{+}) - \lambda \alpha (u_{h}^{+} - u_{h}^{-}), \ \alpha = \max_{\omega \in [c,d]} |f'(\omega)|,$$

where $c = \min(u_h^-, u_h^+), d = \max(u_h^-, u_h^+)$, and θ , λ are two weights satisfying

130 (2.2b)
$$\lambda > |\theta|,$$

which comes from the application of flux (2.2a) to linear hyperbolic equations with 131 upwind-biased numerical fluxes. Note that (2.2b) will guarantee provable linear sta-132 bility for the GLLF fluxes as well as uniqueness existence of the newly designed 133 projection in (3.1) and thus optimal error estimates; for more details, see Remark 3.4. 134 Indeed, the flux (2.2a) and (2.2b) will reduce to the upwind-biased fluxes [20] when 135 f is linear and the standard LLF flux when $\theta = 0$, $\lambda = \frac{1}{2}$. Moreover, the weights θ 136 and λ are chosen based on a balance of numerical viscosity between an E-flux [22] and 137 the central flux, since, as shown in (3.18) below, the numerical viscosity coefficient is 138 $\theta f'(u) + \lambda \alpha$ depending on λ and θ . Specifically, the adjustable coefficient is $\theta f'(u) + \lambda \alpha$ and will be close to that of an E-flux, which is beneficial for shocks (bigger $\lambda - |\theta|$), and to that of the central flux, which is useful for smooth solutions (smaller $\lambda - |\theta|$). 141

2.3. Monotonicity of the GLLF flux. Note that the nonlinear L^2 stability property cannot be proved for the DG scheme with (2.2b), although it is numerically stable. A rigorous proof of the L^2 stability for GLLF fluxes with (2.2b) is more involved and will be studied in future work. Therefore, following [16], a much stronger condition is proposed which will lead to the monotonicity of the GLLF flux and thus L^2 stability.

LEMMA 2.1. The GLLF flux (2.2) is monotone if

(2.3)
$$\lambda \ge \frac{1}{2} + |\theta|.$$

156 (2.4)
$$\frac{\hat{f}(\omega, u_h^+) - \hat{f}(u_h^-, u_h^+)}{\omega - u_h^-} = \left(\frac{1}{2} + \theta\right) \frac{f(\omega) - f(u_h^-)}{\omega - u_h^-} + \lambda \alpha.$$

¹⁵⁷ By the mean value theorem and the definition of α , one has

$$\left|\frac{f(\omega) - f(u_{h}^{-})}{\omega - u_{h}^{-}}\right| \le \alpha.$$

Thus, a substitution of the above estimate, the fact that $\omega - u_h^- > 0$, and the condition $\lambda \geq \frac{1}{2} + |\theta|$ into (2.4) lead to the desired result,

161
$$\hat{f}(\omega, u_h^+) - \hat{f}(u_h^-, u_h^+) \ge 0.$$

Analogously, we can also prove $\hat{f}(u_h^-, u_h^+) - \hat{f}(u_h^-, \omega) \leq 0$. Therefore, the GLLF flux (2.2) with (2.3) is monotone.

¹⁶⁴ Monotonicity of the numerical flux (2.2a) with (2.3) would lead to L^2 stability of ¹⁶⁵ the DG scheme [16, 24].

PROPOSITION 2.2. The DG scheme with flux (2.2a) and (2.3) is L^2 stable.

3. Optimal error estimates. This section is devoted to the analysis of optimal
error estimates of DG methods with GLLF fluxes (2.2) for nonlinear conservation laws.
We begin by presenting some preliminary results on projections and inverse properties
that will be used later.

¹⁷¹ **3.1. Preliminaries.**

3.1.1. Projections. It is well known that design and analysis of some special projections are essential in deriving optimal error estimates, especially when generalized numerical fluxes are considered. In particular, when generalized fluxes are used for nonlinear equations, the following three properties should be taken into account when designing projections.

The first one is that the projection should eliminate terms involving projection 177 errors as much as possible, namely to minimize the contribution of projection terms. 178 This can be achieved by requiring the projection errors to be orthogonal to poly-179 nomials of degree up to k-1 and an exact collocation of the projection error at 180 cell boundaries. For example, when upwind flux is applied, the locally defined Gauss-181 Radau (GR) projection can totally eliminate projection errors on the boundaries [6, 2]. 182 When generalized fluxes are used, the collocation requirement would make projection 183 global (e.g., [20, 18]) and also eliminate projection errors at boundaries. 184

The second one is that the unique existence and optimal approximation properties 185 of the resulting projection are provable, which can be accomplished by analyzing a 186 *global* projection [20, 9] for generalized fluxes when the wind direction does not change. 187 However, when wind direction does change, existence and uniqueness of the projection 188 cannot be established if simply constructing a *global* projection as before. Instead, 189 the idea of introducing a *piecewise global* projection for different regions on which the 190 wind direction keeps its sign is essential; see, e.g., [17], in which degenerate linear 191 variable coefficient hyperbolic equations with upwind-biased fluxes are considered. 192

The last one is that the projection should be linear of u without any time variable 193 explicitly involved, so that the estimate to the time derivative of projection error is a 194 trivial consequence of that of the projection error itself. In particular, the standard 195 local GR projection naturally satisfies this property [6], and when generalized fluxes 196 are adopted, this property also holds by defining projections to be dependent only on 197 some weights but not on u [18, 20, 9, 17]. It is this property that we only consider 198 the leading term of projection errors, and we fully make use of the relation that, at 199 $x_{j+\frac{1}{2}}, \alpha = |f'(u_{j+\frac{1}{2}})| + \mathcal{O}(h)$, which is valid for LLF type fluxes. 200

We are now ready to present the definition of a *piecewise global* projection that 201 is linear for u and also for the time derivative operator. To do that, we first assume 202 f'(u) has finite zeros on I. As h goes to zero, we can assume there exists at most 203 one zero on any cell I_i for j = 1, ..., N. Indeed, the zeros of f'(u) do not vary with 204 respect to the time variable t, since the exact solution is assumed to be smooth and 205 thus $f'(u(x,t)) = f'(u_0(x))$, which is quite beneficial for us to construct a satisfactory 206 projection. To clearly display the main idea in designing a *piecewise global* projection 207 satisfying the three properties mentioned, let us mainly consider the case that f'(u)208 has only two zeros: the case with more zeros can be defined by combining [17] and 209

the technique discussed in this paper. We adopt the notation $\mathbb{Z}_N^+ = \{1, 2, \dots, N\}$ and 210 define $\gamma, \beta \in \mathbb{Z}_N^+$ as 211

213 214

$$\gamma = \{ j \ \left| f'(u_{j-rac{1}{2}}) > 0 \ ext{and} \ f'(u_{j+rac{1}{2}}) \leq 0 \ \ orall j \in \mathbb{Z}_{N}^{+} \},$$

$$eta = \{ j \mid f'(u_{j-rac{1}{2}}) < 0 ext{ and } f'(u_{j+rac{1}{2}}) \ge 0 \ \ orall j \in \mathbb{Z}_N^+ \}.$$

Note that γ and β are two fixed numbers determined by $f'(u_0(x))$; for more details, 215 see [17]. Similar to [17, section 3.1], we can use a unified notation for two index sets 216

$$b^+ = \{\beta, \dots, \gamma - 1\}, \quad b^- = \{\gamma + 1, \dots, \beta - 1\},$$

 $\mathbf{c} \cdot \mathbf{b} \mathbf{e} \mathbf{l}$

for periodic boundary conditions, no matter which (γ or β) is bigger. 218

Then the *piecewise global* projection, denoted by $\mathcal{P}_h u$, is defined as follows: for 219 $u \in H^1(\mathcal{I}_h)$, we define the projection $\mathcal{P}_h u \in V_h^k$ satisfying 220

(3.1a)
$$\int_{I_j} (\mathcal{P}_h u) \varphi dx = \int_{I_j} u \varphi dx \qquad \forall \varphi \in P^{k-1}(I_j), \qquad j \in \mathbb{Z}_N^+$$

222 (3.1b)
$$(\mathcal{P}_h u)_{j+\frac{1}{2}}^- = u_{j+\frac{1}{2}}^-$$
 at $x_{j+\frac{1}{2}}, \qquad j = \gamma,$

 $(\widehat{\mathcal{P}_h u}^p)_{j+\frac{1}{2}} = \hat{u}_{j+\frac{1}{2}}^p$ at $x_{j+\frac{1}{2}}$, $j \in \mathbb{b}^+,$ (3.1c)223

(3.1d)
$$(\widetilde{\mathcal{P}}_{h} \widetilde{u}^{n})_{j-\frac{1}{2}} = \hat{u}_{j-\frac{1}{2}}^{n}$$
 at $x_{j-\frac{1}{2}}, \qquad j \in \mathbb{b}^{-}$

where the superscript p(n) refers to the index set of a region on which $f'(u_{j+\frac{1}{2}})$ is positive (negative), and $\forall z \in H^1(\mathcal{I}_h)$ 227

$$228 \quad \hat{z}^{p} = \left(\frac{1}{2} + (\lambda + \theta)\right)z^{-} + \left(\frac{1}{2} - (\lambda + \theta)\right)z^{+}, \ \hat{z}^{n} = \left(\frac{1}{2} - (\lambda - \theta)\right)z^{-} + \left(\frac{1}{2} + (\lambda - \theta)\right)z^{+}.$$

Remark 3.1. The piecewise global projection (3.1) defines a stronger (local) collo-229 cation at $x_{\gamma+\frac{1}{2}}$. Moreover, a combination of (3.1d) with (3.1b) will lead to an inherent 230 local collocation at $x_{\gamma+\frac{1}{2}}$, namely 231

232
$$(\mathcal{P}_h u)_{j-\frac{1}{2}}^+ = u_{j-\frac{1}{2}}^+, \quad j = \gamma + 1$$

Therefore, the projection (3.1) can be decoupled starting from I_{γ} or $I_{\gamma+1}$, and this 233 is why it is called a *piecewise global* projection. Note that when f'(u(x,t)) does not 234 change its sign $\forall (x,t) \in I \times (0,T]$, the *piecewise global* projection defined above will 235 reduce to some *global* projections as those in [20, 9]. 236

The optimal approximation property of $\mathcal{P}_{\mu}u$ is given in the following lemma. 237

LEMMA 3.2. Assume u is smooth and periodic, and f'(u) has finite zeros on I; 238 then there exists a unique projection $\mathcal{P}_{h}u$ satisfying (3.1). Moreover, there holds the 239 following optimal approximation property: 240

(3.2)
$$\|u - \mathcal{P}_h u\|_{L^2(I)} + h^{\frac{1}{2}} \|u - \mathcal{P}_h u\|_{L^2(\Gamma_h)} \le C h^{k+1} \|u\|_{H^{k+1}(\mathcal{I}_h)},$$

where C is independent of the mesh size h. 242

The proof of Lemma 3.2 is postponed to the appendix. 243

As for the initial discretization, we would like to use the standard L^2 projection 244 π_h , and we have 245

(3.3)
$$\|u_0 - \pi_h u_0\|_{L^2(I)} \le Ch^{k+1} \|u_0\|_{H^{k+1}(\mathcal{I}_h)}.$$

3.1.2. Inverse inequalities and the a priori assumption. The following inverse properties [3, 11] will be used for nonlinear equations. For all $v_h \in V_h^k$, there holds (i) $\|(v_h)_x\|_{L^2(I)} \leq Ch^{-1} \|v_h\|_{L^2(I)}$, (ii) $\|v_h\|_{L^2(\Gamma_h)} \leq Ch^{-\frac{1}{2}} \|v_h\|_{L^2(I)}$, (iii) $\|v_h\|_{L^\infty(I)}$ $\leq Ch^{-\frac{1}{2}} \|v_h\|_{L^2(I)}$.

Denoting the error as $e = u - u_h$ and $\eta = u - \mathcal{P}_h u$, $\xi = \mathcal{P}_h u - u_h$, the following a priori assumption is useful to deal with high order terms

253 (3.4)
$$\|\xi(t)\|_{L^2(I)} \le h^{\frac{3}{2}} \quad \forall t \in (0,T].$$

By the triangle inequality, (3.4), and inverse property (iii), it is easy to show for $k \ge 1$

$$\|e(t)\|_{L^{\infty}(I)} \le \|\eta(t)\|_{L^{\infty}(I)} + \|\xi(t)\|_{L^{\infty}(I)} \le Ch \quad \forall t \in (0, T],$$

where we have also used the estimate $\|\eta(t)\|_{L^{\infty}(I)} \leq Ch^{k+\frac{1}{2}}$ implied by (3.2) and the Sobolev inequality. The a priori assumption (3.4) can be verified by the continuity of $\|\xi(t)\|$ and optimal error estimate in (3.6) below, with the initial error estimate at t = 0 as a starting point; for more details, we refer to [21].

3.2. The main result. We are now ready to state the optimal error estimates, which hold for GLLF fluxes that are not even *monotone*, as long as (2.2b) is satisfied.

THEOREM 3.3. Let u be the exact solution of (1.1), which is assumed to be sufficiently smooth, i.e., $\|u\|_{H^{k+1}(\mathcal{I}_h)}$ and $\|u_t\|_{H^{k+1}(\mathcal{I}_h)}$ are bounded uniformly for any time $t \in [0,T]$. Assume f is smooth, for example, $f \in C^2$. Let u_h be the DG solution with GLLF fluxes (2.2) for solving nonlinear conservation laws. If piecewise polynomials space V_h^k of degree $k \geq 1$ is used, then for small enough h there holds the following optimal error estimate:

268 (3.6)
$$\|u(t) - u_h(t)\|_{L^2(I)} \le Ch^{k+1} \quad \forall t \in (0,T],$$

where C is independent of h.

3.3. Proof of the main result. We will finish the proof with the following five steps.

Step 1: Error equation and error decomposition. Since the exact solution u also satisfies the DG scheme (2.1), by Galerkin orthogonality, there holds the cell error equation

275 (3.7)
$$\int_{I_j} e_t v_h dx = \int_{I_j} \left(f(u) - f(u_h) \right) (v_h)_x dx - (f - \hat{f}) v_h^- \big|_{j+\frac{1}{2}} + (f - \hat{f}) v_h^+ \big|_{j-\frac{1}{2}}$$

for any $v_h \in V_h^k$ and j = 1, ..., N, where $e = u - u_h$. Typically, to deal with nonlinear flux functions, the following linearization technique based on Taylor expansion should be used.

On any cell I_j , by the second order Taylor expansion, one has

280
$$f(u) - f(u_h) = f'(u)e - R_0e^2$$

where $R_0 = \frac{1}{2} \int_0^1 f''(u+s(u_h-u))(1-s) ds$. Next, to deal with nonlinear boundary terms, namely $f(u_{j+\frac{1}{2}}) - \hat{f}((u_h^-)_{j+\frac{1}{2}}, (u_h^+)_{j+\frac{1}{2}})$, we need to apply the second order Taylor expansion to each nonlinear term in the GLLF flux (2.2); when omitting the subscript $j + \frac{1}{2}$, it reads

$$f(u_h^-) = f(u) - f'(u)e^- + R_1(e^-)^2, \quad f(u_h^+) = f(u) - f'(u)e^+ + R_2(e^+)^2,$$

where $R_1 = \frac{1}{2} \int_0^1 f''(u + s(u_h^- - u))(1 - s) ds$, $R_2 = \frac{1}{2} \int_0^1 f''(u + s(u_h^+ - u))(1 - s) ds$. Therefore, at each boundary point $x_{j+\frac{1}{2}}$, by $\llbracket u_h \rrbracket = \llbracket u_h - u \rrbracket = -\llbracket \eta \rrbracket - \llbracket \xi \rrbracket$ since u is continuous across cell interfaces, one has, after some simple algebraic calculations

$$f(u) - \widehat{f}(u_h^-, u_h^+) = \widehat{f'\eta}^{\mathrm{lin}} + \widehat{f'\xi}^{\mathrm{lin}} - \widehat{Re^2}^{\mathrm{nlr}},$$

²⁹⁰ where

297

(3.8a)
$$\widehat{f'\eta}^{\text{lin}} = \left(\left(\frac{1}{2} + \theta\right) f'(u) + \lambda \alpha \right) \eta^- + \left(\left(\frac{1}{2} - \theta\right) f'(u) - \lambda \alpha \right) \eta^+,$$

(3.8b)
$$\widehat{f'\xi}^{\text{lin}} = \left(\left(\frac{1}{2} + \theta\right)f'(u) + \lambda\alpha\right)\xi^{-} + \left(\left(\frac{1}{2} - \theta\right)f'(u) - \lambda\alpha\right)\xi^{+},$$

293 (3.8c)
$$\widehat{Re^2}^{\text{nir}} = \left(\frac{1}{2} + \theta\right) R_1(e^-)^2 + \left(\frac{1}{2} - \theta\right) R_2(e^+)^2$$
.

For notational convenience, we use the following DG spatial discretization operator: $\forall \rho, \phi \in H^1(\mathcal{I}_h)$,

$$\mathcal{H}_j(\rho,\phi;\hat{\rho}) = \int_{I_j} \rho \phi_x \mathrm{d}x - \hat{\rho} \phi^- \big|_{j+\frac{1}{2}} + \hat{\rho} \phi^+ \big|_{j-\frac{1}{2}},$$

and $\mathcal{H}(\rho,\phi;\hat{\rho}) = \sum_{j=1}^{N} \mathcal{H}_j(\rho,\phi;\hat{\rho})$. Taking $v_h = \xi$ in (3.7) and summing up over all *j*, the error equation can be written as

$$^{(3.9)}_{300} \quad \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\xi\|_{L^2(I)}^2 + \int_I \eta_t \xi \mathrm{d}x = \mathcal{H}(f'(u)\eta,\xi;\widehat{f'\eta}^{\mathrm{lin}}) + \mathcal{H}(f'(u)\xi,\xi;\widehat{f'\xi}^{\mathrm{lin}}) - \mathcal{H}(R_0 e^2,\xi;\widehat{Re^2}^{\mathrm{nlr}}),$$

where $\int_{I} \eta_t \xi dx = \sum_{j=1}^{N} \int_{I_j} \eta_t \xi dx$. The components on the right-hand side of (3.9) are referred to as " η terms," " ξ terms," and "higher order terms," which are estimated in the subsequent three steps.

304 Step 2: Estimate of η terms. Note that

$$(3.10) \qquad \mathcal{H}(f'(u)\eta,\xi;\widehat{f'\eta}^{\ln}) = \sum_{j=1}^{N} \int_{I_j} f'(u)\eta\xi_x dx + \sum_{j=1}^{N} \left(\widehat{f'\eta}^{\ln}[\xi]\right)_{j+\frac{1}{2}} \triangleq S_1 + S_2.$$

The estimate of S_1 can be obtained by using the local linearization $f'(u) = f'(u_j) + f'(u) - f'(u_j)$ and the orthogonality property of \mathcal{P}_h in (3.1a); it reads

$$S_{1} = \sum_{j=1}^{N} \int_{I_{j}} \left(f'(u_{j}) + f'(u) - f'(u_{j}) \right) \eta \xi_{x} \mathrm{d}x$$

$$(2.11) \qquad \leq Ch \|v\| = \|\xi\| = Ch^{k+1}$$

$$(3.11) \leq Ch \|\eta\|_{L^{2}(I)} \|\xi_{x}\|_{L^{2}(I)} \leq C \|\eta\|_{L^{2}(I)} \|\xi\|_{L^{2}(I)} \leq Ch^{k+1} \|\xi\|_{L^{2}(I)},$$

where we have also used the inverse property (i) and the fact that $|f'(u) - f'(u_j)| \le Ch$

 $_{312}$ implied by smoothness of f and u.

We now turn to the estimate of S_2 . If we simply define a projection by asking for $\widehat{f'\eta}^{\text{lin}} = 0$ at each cell interface except at $x_{\beta-\frac{1}{2}}$, namely

(3.12)
$$\widehat{f'\eta}^{\text{lin}} = \left(\left(\frac{1}{2} + \theta\right)f'(u) + \lambda\alpha\right)\eta^- + \left(\left(\frac{1}{2} - \theta\right)f'(u) - \lambda\alpha\right)\eta^+$$

to be zero except at $x_{\beta-\frac{1}{2}}$, we can see that the proposed projection would be dependent on f'(u) as well as α and thus on t, indicating that it is almost impossible to prove $(\mathcal{P}_h u)_t = \mathcal{P}_h(u_t)$ which will be used to estimate $\|\eta_t\|_{L^2(I)}$.

Fortunately, since α is chosen locally for values between u_h^- and u_h^+ at each cell interface for the GLLF flux, it follows from the smoothness of f and u that

(3.13)
$$\alpha = \max_{\omega \in [c,d]} |f'(\omega)| = |f'(u)| + \varepsilon, \text{ at } x_{j+\frac{1}{2}},$$

where $|\varepsilon| \leq C ||e||_{L^{\infty}(I)} \leq Ch$ by the estimate (3.5) implied by (3.4). At each cell interface $x_{j+\frac{1}{2}}$, a substitution of (3.13) into (3.12) leads to

$$\widehat{f'\eta}^{\lim} = \left(\left(\frac{1}{2} + \lambda + \theta\right)f'(u) + \lambda\varepsilon\right)\eta^{-} + \left(\left(\frac{1}{2} - \lambda - \theta\right)f'(u) - \lambda\varepsilon\right)\eta^{+}, \quad f'(u) > 0,$$

$$\stackrel{324}{\underset{325}{}} \widehat{f'\eta}^{\lim} = \left(\left(\frac{1}{2} - \lambda + \theta\right)f'(u) + \lambda\varepsilon\right)\eta^{-} + \left(\left(\frac{1}{2} + \lambda - \theta\right)f'(u) - \lambda\varepsilon\right)\eta^{+}, \quad f'(u) \le 0,$$

326 which is

(3.14a)

$$\widehat{f'\eta}^{\text{lin}} = f'(u) \left(\left(\frac{1}{2} + (\lambda + \theta) \right) \eta^- + \left(\frac{1}{2} - (\lambda + \theta) \right) \eta^+ \right) - \lambda \varepsilon \llbracket \eta \rrbracket, \quad f'(u) > 0,$$

(3.14b)

$$\widehat{f'\eta}^{\text{lin}} = f'(u) \left(\left(\frac{1}{2} - (\lambda - \theta) \right) \eta^- + \left(\frac{1}{2} + (\lambda - \theta) \right) \eta^+ \right) - \lambda \varepsilon \llbracket \eta \rrbracket, \quad f'(u) \le 0,$$

at the cell boundaries $x_{j+\frac{1}{2}}$. By the definition of the special *piecewise global* projection \mathcal{P}_h in (3.1), the first term on the right side of (3.14a) and (3.14b) will be zero except at the point $x_{\beta-\frac{1}{2}}$, namely $f'(u_{\beta-\frac{1}{2}})\hat{\eta}_{\beta-\frac{1}{2}}^n \neq 0$. Consequently, for any $j = 1, \ldots, N$

$$|\widehat{f'\eta}_{j+\frac{1}{2}}^{\text{lin}}| \le Ch(\|\eta\|_{L^2(\partial I_{\beta-1})} + \|\eta\|_{L^2(\partial I_{\beta})} + \|\eta\|_{L^2(\partial I_j)} + \|\eta\|_{L^2(\partial I_{j+1})}),$$

since $|f'(u_{\beta-\frac{1}{2}})| \leq Ch$ and $|\varepsilon| \leq Ch$. Then the Cauchy–Schwarz inequality, inverse inequality (ii), and optimal approximation property (3.2) give us a bound of S_2 ,

336 (3.15)
$$S_2 \le Ch \|\eta\|_{L^2(\Gamma_h)} \|\xi\|_{L^2(\Gamma_h)} \le Ch^{k+1} \|\xi\|_{L^2(I)}.$$

³³⁷ A combination of (3.11) and (3.15) leads to the estimate to η terms

338 (3.16)
$$\mathcal{H}(f'(u)\eta,\xi;\widehat{f'\eta}^{\text{in}}) \le Ch^{k+1} \|\xi\|_{L^2(I)},$$

³³⁹ where C is independent of h.

340 Step 3: Estimate of ξ terms. Using integration by parts, we have

341

342

343

344

$$\begin{aligned} \mathcal{H}(f'(u)\xi,\xi;\widehat{f'\xi}^{\mathrm{lin}}) \\ &= \sum_{j=1}^{N} \int_{I_{j}} f'(u)\xi\xi_{x}\mathrm{d}x + \sum_{j=1}^{N} \left(\widehat{f'\xi}^{\mathrm{lin}}[\![\xi]]\!]_{j+\frac{1}{2}} \\ &= \sum_{j=1}^{N} \left(-\frac{1}{2} \int_{I_{j}} \partial_{x}f'(u)\xi^{2}\mathrm{d}x - (f'(u)\{\!\{\xi\}\!\}[\![\xi]]\!]_{j+\frac{1}{2}} \right) \\ &+ \sum_{j=1}^{N} \left(\left(\left(\frac{1}{2} + \theta\right)f'(u) + \lambda\alpha\right)\xi^{-} + \left(\left(\frac{1}{2} - \theta\right)f'(u) - \lambda\alpha\right)\xi^{+} \right) \right) \\ & \int_{j+\frac{1}{2}}^{N} [\![\xi]]_{j+\frac{1}{2}} [\![\xi]]_{j+\frac{1}{2}} \end{aligned}$$

$$= \sum_{j=1}^{N} \left(-\frac{1}{2} \int_{I_j} \partial_x f'(u) \xi^2 \mathrm{d}x \right) - \sum_{j=1}^{N} \left(\theta f'(u) + \lambda \alpha \right)_{j+\frac{1}{2}} \left[\! \left[\xi \right] \! \right]_{j+\frac{1}{2}}^2$$

³⁴⁶₃₄₇ (3.17)
$$\leq C \|\xi\|_{L^2(I)}^2 + Z$$
,

348 where

(3.18)
$$Z = -\sum_{j=1}^{N} \left(\theta f'(u) + \lambda \alpha\right)_{j+\frac{1}{2}} [\![\xi]\!]_{j+\frac{1}{2}}^{2}.$$

To estimate Z, let us split the sum with respect to j into three parts based on values of $|f'(u_{j+\frac{1}{2}})|$, namely for a given constant $\tilde{C} = \lambda C/(\lambda - |\theta|) > 0$ with C satisfying $|\varepsilon| \le Ch$

353 (3.19)
$$Z = Z_1 + Z_2 + Z_3,$$

354 where

355

 $Z_{1} = -\sum_{\substack{f'(u_{j+\frac{1}{2}})=0\\|f'(u_{j+\frac{1}{2}})| \leq \tilde{C}h}} \left(\theta f'(u) + \lambda \alpha\right)_{j+\frac{1}{2}} [\![\xi]\!]_{j+\frac{1}{2}}^{2},$

$$Z_{3} = -\sum_{|f'(u_{j+\frac{1}{2}})| > \tilde{C}h} \left(\theta f'(u) + \lambda \alpha\right)_{j+\frac{1}{2}} \llbracket \xi \rrbracket_{j+\frac{1}{2}}^{2}$$

For Z_1 , it is easy to show that

360 (3.20a)
$$Z_1 = -\sum_{f'(u_{j+\frac{1}{2}})=0} \lambda \alpha_{j+\frac{1}{2}} [\![\xi]\!]_{j+\frac{1}{2}}^2 \le 0.$$

361 For the index set satisfying $|f'(u_{j+\frac{1}{2}})| \leq \tilde{C}h$, by (3.13), we have

$$|\theta f'(u_{j+\frac{1}{2}}) + \lambda \alpha_{j+\frac{1}{2}}| \le Ch.$$

³⁶³ Then, by the inverse property (ii), we get

₃₆₄ (3.20b)
$$Z_2 \le Ch \|\xi\|_{L^2(\Gamma_h)}^2 \le C \|\xi\|_{L^2(\Gamma)}^2$$

As to the index set satisfying $|f'(u_{j+\frac{1}{2}})| > \tilde{C}h$, by (3.13) and the choice of \tilde{C} , we deduce that

$$\theta f'(u_{j+\frac{1}{2}}) + \lambda \alpha_{j+\frac{1}{2}} \ge (\lambda - |\theta|) |f'(u_{j+\frac{1}{2}})| - \lambda|\varepsilon| \ge 0,$$

368 since $|\varepsilon| \leq Ch$. Thus

367

$$_{369}$$
 (3.20c) $Z_3 \le 0.$

Substituting (3.20a)–(3.20c) into (3.17), we arrive at the estimate of ξ terms,

371 (3.21)
$$\mathcal{H}(f'(u)\xi,\xi;\widehat{f'\xi}^{\text{in}}) \le C \|\xi\|_{L^2(I)}^2,$$

³⁷² where C is independent of h.

Remark 3.4. We can see that the condition (2.2b), namely $\lambda > |\theta|$, is crucial for the estimate of $\mathcal{H}(f'(u)\xi,\xi;\widehat{f'\xi}^{\text{lin}})$, especially in driving (3.20c). Moreover, the nonnegative number $\theta f'(u_{j+\frac{1}{2}}) + \lambda \alpha_{j+\frac{1}{2}}$ can be regarded as the numerical viscosity coefficient for the GLLF fluxes (2.2), which allows us to choose suitable λ and θ (closer λ and $|\theta|$) such that the numerical viscosity coefficient is smaller than that of purely upwind fluxes. This is useful for resolving shocks even without nonlinear limiters; see, e.g., Figures 1 and 2 below.

Step 4: Estimate of higher order terms. For higher order terms, it follows from the Cauchy–Schwarz inequality, the inverse properties (i)–(iii), and the optimal approximation property (3.2) that

$$\mathcal{H}(R_0 e^2, \xi; \widehat{Re^2}^{\operatorname{nlr}}) \le \sum_{j=1}^N \left| \int_{I_j} R_0 e^2 \xi_x \mathrm{d}x + \left(\widehat{Re^2}^{\operatorname{nlr}} \llbracket \xi \rrbracket \right)_{j+\frac{1}{2}} \right|$$

384

$$\leq C \|e\|_{L^{\infty}(I)} \left(\|e\|_{L^{2}(I)} \|\xi_{x}\|_{L^{2}(I)} + \|e\|_{L^{2}(\Gamma_{h})} \|\xi\|_{L^{2}(\Gamma_{h})} \right)$$

385

400

$$\leq Ch^{-1} \|e\|_{L^{\infty}(I)} \left(\|\eta\|_{L^{2}(I)} + \|\xi\|_{L^{2}(I)} + h^{\frac{1}{2}} \|\eta\|_{L^{2}(\Gamma_{h})} \right) \|\xi\|_{L^{2}(I)}$$

$$\leq Ch^{-1} \|e\|_{L^{\infty}(I)} (\|\xi\|_{L^{2}(I)} + h^{\kappa+1}) \|\xi\|_{L^{2}(I)}$$

which, by (3.5) implied by the a priori assumption (3.4), is

389 (3.22)
$$\mathcal{H}(R_0 e^2, \xi; \widehat{Re^2}^{\operatorname{nlr}}) \le C \|\xi\|_{L^2(I)}^2 + Ch^{k+1} \|\xi\|_{L^2(I)},$$

³⁹⁰ where C is independent of h.

Step 5: The final estimate of $\|\boldsymbol{\xi}\|_{L^2(I)}$. Collecting the estimates (3.16), (3.21), and (3.22) into (3.9) and using the Cauchy–Schwarz inequality, we arrive at the following inequality for $\|\boldsymbol{\xi}\|_{L^2(I)}$:

$$(3.23) \qquad \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\xi\|_{L^{2}(I)}^{2} \leq \|\eta_{t}\|_{L^{2}(I)} \|\xi\|_{L^{2}(I)} + C \|\xi\|_{L^{2}(I)}^{2} + Ch^{k+1} \|\xi\|_{L^{2}(I)}.$$

By the definition of \mathcal{P}_h in (3.1), we can see that \mathcal{P}_h depends solely on u and two constants λ, θ , indicating that \mathcal{P}_h is a linear operator of u. Indeed, this can be seen clearly from the explicit formula of \mathcal{P}_h depending only on the integrals and point values of u, following the argument in [17, section 4.1]. Thus, $\eta_t = u_t - (\mathcal{P}_h u)_t = u_t - \mathcal{P}_h(u_t)$. Therefore, by Lemma 3.2

$$\|\eta_t\|_{L^2(I)} \le Ch^{k+1} \|u_t\|_{H^{k+1}(\mathcal{I}_h)}.$$

Substituting the above estimate into (3.23) and using Young's inequality, one has 401

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\xi\|_{L^{2}(I)}^{2} \leq C\|\xi\|_{L^{2}(I)}^{2} + Ch^{2k+2}$$

Application of Gronwall's inequality together with initial error estimate (3.3) leads to 403

$$\|\xi(t)\|_{L^{2}(I)} \le Ch^{k+1} \quad \forall t \in (0,T],$$

where C is independent of h. The optimal error estimate (3.6) in Theorem 3.3 can 405 thus be obtained by taking into account $\|\eta(t)\|_{L^2(I)} \leq Ch^{k+1}$. 406

Remark 3.5. For the Dirichlet boundary conditions, the optimal error estimates 407 conclusion of Theorem 3.3 is still valid. The Dirichlet boundary conditions have two 408 cases that the signs of f'(u) at two end boundaries of I are the same or different. For 409 such cases, numerical fluxes at $x_{1/2}$ and $x_{N+1/2}$ should be chosen as (3.25) or (3.26) of 410 [17, section 3.5], respectively. As to the design and analysis for projections, following 411 [17, 20], for the projection errors we can require an exact collocation at the outflow 412 boundary while asking for another collocation with weights λ, θ on which $f'(u_{i+1/2})$ 413 is sign definite. This yields a *piecewise global* projection similar to that in (3.1). The 414 optimal error estimates can be obtained analogously, and a detailed proof is omitted. 415

4. Numerical experiments. In this section, we present some numerical ex-416 amples mainly addressing the following two issues. One is the sharpness of optimal 417 error estimates in Theorem 3.3, which hold not only for *monotone* GLLF fluxes under 418 condition (2.3) but also for the GLLF flux that is not *monotone* when some suitable 419 weights are chosen. Another issue is the excellent performance of GLLF fluxes in 420 resolving shocks, especially for those which are not monotone. 421

For all examples, the third order TVD Runge–Kutta time discretization is used 422 with some suitable time steps. In Examples 4.1 and 4.2, $\tau = CFL_k \cdot h^{r_k}$ for P^k 423 $(1 \le k \le 4)$ polynomials with $r_1 = r_2 = 1$, $r_3 = 1.334 > 4/3$, $r_4 = 1.667 > 5/3$ and 424 $CFL_1 = 0.1, CFL_2 = CFL_3 = CFL_4 = 0.05.$ Uniform meshes are used. 425

Example 4.1. Consider the Burgers equation 426

1

427

$$\begin{cases} u_t + \left(\frac{u^2}{2}\right)_x = 0, & (x,t) \in [-1,1] \times (0,T], \\ u(x,0) = u_0(x), & x \in [-1,1], \end{cases}$$

with periodic boundary conditions, where $u_0(x) = \frac{1}{2}\sin(\pi x) + \frac{1}{4}$ for $x \in [-1, 1]$. 428

The numerical errors and orders for different weights at T = 0.3 for which the 432 exact is still smooth are listed in Table 1. From the table, we conclude that optimal 433 orders of k + 1 can always be observed for GLLF fluxes, no matter whether it is 434 monotone or not. 435

To demonstrate stability and especially for nonmonotone GLLF fluxes, we con-436 sider Example 4.1 with T = 12 that a shock has been developed. The cell averages of 437 DG solutions at T = 12 with 80 cells are shown in Figure 1, from which we can see 438 that the DG scheme with GLLF fluxes is always stable with potential advantages in 439 resolving shocks; see subfigure (e). In Figure 2, we plot the pointwise values of DG 440 solutions for the cells from No. 33 to No. 40 among the total 80 cells. It seems that 441 the numerical solution for the weights in subfigure (f) is less oscillatory than that of 442 the standard LLF flux in subfigure (b), especially for P^1 elements. 443

12

TABLE 1

 L^2 errors and orders for Example 4.1 using P^k polynomials with different λ , θ on uniform 430 431 mesh of N cells. T = 0.3.

		$\lambda = 0$).5	$\lambda = 0$.5	$\lambda = 0$).5	$\lambda = 1$.25	
	N	$\theta = -0.25$		$\theta = 0$		$\theta = 0$	0.25	$\theta = 0$	$\theta = 0$	
		L^2 error	Order	L^2 error	Order	L^2 error	Order	L^2 error	Order	
	20	4.92E-03	-	3.96E-03	-	4.20E-03	-	3.21E-03	-	
P^1	40	1.37E-03	1.84	1.05E-03	1.91	1.17E-03	1.84	8.04E-03	2.00	
Γ	80	3.70E-04	1.89	2.75E-04	1.94	3.17E-04	1.89	2.02E-04	1.99	
	160	9.71E-05	1.93	7.10E-05	1.96	8.35E-05	1.92	5.09E-05	1.99	
-	20	2.40E-04	_	2.49E-04	-	2.63E-04	_	3.01E-04	-	
P^2	40	3.00E-05	3.00	3.38E-05	2.88	3.82E-05	2.78	4.81E-05	2.65	
Γ	80	3.83E-06	2.97	4.52E-06	2.90	5.37E-06	2.83	7.34E-06	2.71	
	160	4.86E-07	2.98	5.89E-07	2.94	7.24E-07	2.89	1.05E-06	2.81	
	20	2.07E-05	_	1.96E-05	-	1.98E-05	_	2.00E-05	-	
P^3	40	1.64E-06	3.66	1.40E-06	3.91	1.34E-06	3.88	1.28E-06	3.97	
P^{+}	80	1.23E-07	3.74	9.38E-08	3.90	8.64E-08	3.96	7.72E-08	4.05	
	160	8.70E-09	3.82	6.15E-09	3.93	5.61E-09	3.95	4.82E-09	4.00	
P^4	20	2.45E-06	_	2.17E-06	-	2.09E-06	_	2.08E-06	-	
	40	7.02E-08	5.12	7.25E-08	4.90	7.63E-08	4.78	8.52E-08	4.61	
	80	2.14E-09	5.04	2.44E-09	4.89	2.78E-09	4.78	3.49E-09	4.61	
	160	6.72E-11	4.99	7.97E-11	4.93	9.55E-11	4.86	1.32E-10	4.73	

In order to show long time behavior of DG errors for GLLF fluxes, in what follows 446 we consider two nonhomogeneous nonlinear hyperbolic equations with smooth exact 447 solution. Note that the optimal error estimates may not be valid for such an equation. 448 This is because the proposed special projection \mathcal{P}_h does not work, as the characteristic 449 lines may be curved and thus the zeros of f'(u(x,t)) can be dependent on t. 450

Example 4.2. Consider the following nonhomogeneous nonlinear equation: 451

(

429

$$\begin{cases} u_t + \left(\frac{u^2}{2}\right)_x = g(x,t), & (x,t) \in [0,2\pi] \times (0,T], \\ u(x,0) = u_0(x), & x \in [0,2\pi], \end{cases}$$

with periodic boundary conditions, where $u_0(x) = \sin x$, $g(x,t) = \frac{1}{2}\sin(2x-t)$ such 453 that the exact solution is $u(x,t) = \sin(x-\frac{t}{2}) + \frac{1}{2}$. 454

The L^2 numerical errors and orders with different λ, θ at $T = \pi$ are given in 455 Table 2, from which we conclude that the DG scheme (2.1) with GLLF fluxes for the 456 nonlinear equation in Example 4.2 also achieves optimal (k + 1)th order of accuracy. 457 Moreover, when the final time T is large enough, the errors do not show growth; 458 for instance, when T = 100, N = 160, $(\lambda, \theta) = (0.5, -0.25)$, the L^2 errors are still 459 4.72E-07 for the P^2 case. 460

Example 4.3. Consider the following equation with strong nonlinearity: 464

465

$$\begin{cases} u_t + (e^u)_x = g(x, t), & (x, t) \in [0, 2\pi] \times (0, T], \\ u(x, 0) = u_0(x), & x \in [0, 2\pi], \end{cases}$$

with periodic boundary conditions, where $u_0(x) = \sin x$, $g(x,t) = \cos(x-t)(e^{\sin(x-t)} - e^{\sin(x-t)})$ 466 1) such that the exact solution is $u(x,t) = \sin(x-t)$. 467

In this example, we only present numerical results for the P^2 and P^3 cases, and 468 $\tau = CFL_k \cdot h^{r_k}$ for P^k (k = 2, 3) polynomials with $r_2 = 1$, $r_3 = 1.334 > 4/3$ and 469

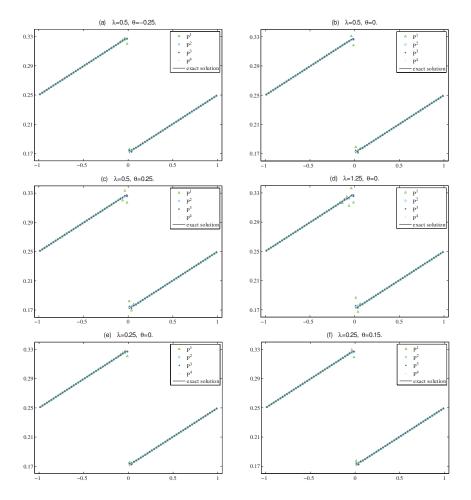
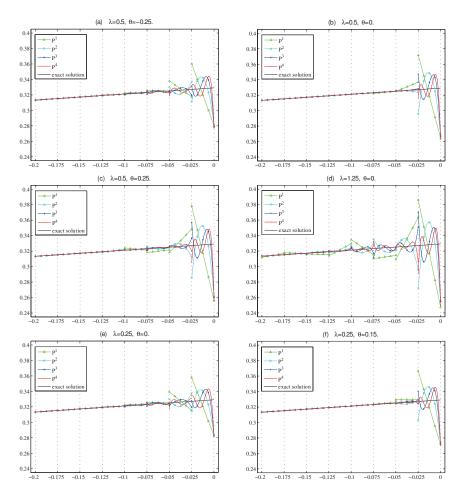


FIG. 1. Cell averages of DG solutions in Example 4.1 using P^k polynomials. N = 80, T = 12.

 $CFL_2 = CFL_3 = 0.03$. The L^2 errors and orders with different λ, θ at $T = \pi$ are given in Table 3, from which we can also observe the expected optimal (k+1)th order of accuracy for the DG error.

Numerical results of Examples 4.2 and 4.3 indicate that the DG scheme with GLLF fluxes maintains stability and exhibits excellent long time behaviors, even for conservation laws with strong nonlinearity. In addition, it seems that the DG scheme with smaller numerical viscosity coefficients (closer λ and $|\theta|$) produces smaller magnitude of DG errors for even k, while it produces bigger magnitude of DG errors for odd k. This agrees with numerical results for the linear version of GLLF fluxes in [20], in which linear hyperbolic equations with upwind-biased fluxes are considered.

5. Concluding remarks. In this paper, we study the DG scheme with GLLF fluxes for scalar nonlinear conservation laws. The stability of the DG scheme is established when $\lambda \geq \frac{1}{2} + |\theta|$, and optimal a priori error estimates are obtained under the condition $\lambda > |\theta|$, for which linear stability can be proved [20]. The main technicality is the construction and analysis of a *piecewise global* projection, which not only eliminates as many projection error terms as possible with provable optimal



445 FIG. 2. Pointwise values of DG solutions in Example 4.1 using P^k polynomials. N = 80, T = 12.

⁴⁸⁹ approximation property, but also commutes with the time derivative operator. It is ⁴⁹⁰ worth pointing out that the optimal error estimates are also valid for GLLF fluxes ⁴⁹¹ that are not *monotone*, and the numerical viscosity coefficients are adjustable, making ⁴⁹² it possible to better resolve shocks. Numerical experiments are given to validate ⁴⁹³ the theoretical results. Future work includes a rigorous study of stability for *non-*⁴⁹⁴ *monotone* GLLF fluxes with $|\theta| < \lambda < |\theta| + \frac{1}{2}$ and extension to two-dimensional ⁴⁹⁵ nonlinear conservation laws.

Appendix A. Proof of Lemma 3.2. First, let us introduce the standard locally defined GR projection P_h^- , whose definition is as follows. For $u \in H^1(\mathcal{I}_h)$, $P_h^- u \in V_h^k$ is the unique piecewise polynomial satisfying

$$\int_{I_j} (P_h^- u)\varphi dx = \int_{I_j} u\varphi dx \quad \forall \varphi \in P^{k-1}(I_j),$$

$$(A.1b) \qquad (\mathcal{P}_h u)_{j+\frac{1}{2}}^- = u_{j+\frac{1}{2}}^- \qquad \text{at } x_{j+\frac{1}{2}}$$

TABLE 2

⁴⁶² L^2 errors and orders for Example 4.2 using P^k polynomials with different λ , θ on uniform ⁴⁶³ mesh of N cells. $T = \pi$.

		$\lambda = 0.5$		$\lambda = 0.5$		$\lambda = 0.5$		$\lambda = 1.25$	
N	$\theta = -0.25$		$\theta = 0$		$\theta = 0.25$		$\theta = 0$		
		L^2 error	Order	L^2 error	Order	L^2 error	Order	L^2 error	Order
P^1	20	1.44E-02	_	1.08E-02	_	1.33E-02	_	7.05E-03	-
	40	3.60E-03	2.00	2.67E-03	2.02	3.39E-03	1.98	1.84E-03	2.02
Γ	80	$8.97 \text{E}{-}04$	2.01	6.64E-04	2.01	8.56E-04	1.98	4.59E-04	2.01
	160	2.24E-04	2.00	1.66E-04	2.00	2.15E-04	1.99	1.15E-04	2.00
	20	2.60E-04	-	3.25E-04	-	4.17E-04	-	6.92E-04	-
P^2	40	3.32E-05	2.97	3.83E-05	3.08	4.75E-05	3.13	8.43E-05	3.04
P^{\perp}	80	3.91E-06	3.09	4.46E-06	3.10	5.50E-06	3.11	9.27E-06	3.18
	160	4.72E-07	3.05	$5.37 \text{E}{-}07$	3.05	6.64E-07	3.05	1.07E-06	3.11
	20	6.72E-06	_	5.32E-06	_	6.98E-06	_	3.88E-06	-
P^3	40	4.29E-07	3.97	3.30E-07	4.01	4.17E-07	4.06	2.38E-07	4.02
P°	80	2.72E-08	3.98	$2.07 \text{E}{-}08$	3.99	2.63E-08	3.99	1.48E-08	4.00
	160	1.70E-09	4.00	1.29E-09	4.00	1.64E-09	4.00	9.26E-10	4.00
P^4	20	1.19E-07	-	1.31E-07	-	1.56E-07	-	2.50E-07	-
	40	3.74E-09	5.00	4.00E-09	5.03	4.52E-09	5.11	7.15E-09	5.13
	80	1.15E-10	5.02	1.22E-10	5.04	1.36E-10	5.06	1.99E-10	5.17
	160	3.55E-12	5.02	3.75E-12	5.02	4.15E-12	5.03	5.83E-12	5.09

473

TABLE 3

⁴⁷⁴ L^2 errors and orders for Example 4.3 using P^k polynomials with different λ , θ on uniform ⁴⁷⁵ mesh of N cells. $T = \pi$.

		$\lambda = 0$	-	$\lambda = 0$	-	$\lambda = 0$	-	$\lambda = 1$	-
	N	$\theta = -0.25$		$\theta = 0$		$\theta = 0.25$		$\theta = 0$	
		L^2 error	Order	L^2 error	Order	L^2 error	Order	L^2 error	Order
	20	2.04E-04	_	2.70E-04	—	3.50E-04	_	5.12E-04	_
P^2	40	2.52E-05	3.02	3.36E-05	3.01	4.40E-05	2.99	6.66E-05	2.94
Ρ	80	3.14E-06	3.00	4.19E-06	3.00	5.51E-06	3.00	8.42E-06	2.98
	160	3.93E-07	3.00	5.24E-07	3.00	6.89E-07	3.00	1.05E-06	3.00
	20	8.15E-06	—	5.22E-06	—	4.36E-06	—	3.83E-06	_
P^3	40	5.26E-07	3.95	3.25E-07	4.01	2.70E-07	4.01	2.37E-07	4.01
	80	3.31E-08	3.99	2.03E-08	4.00	1.69E-08	3.00	1.48E-08	4.00
	160	2.07E-09	4.00	1.27E-09	4.00	1.05E-09	4.00	9.23E-10	4.00

for j = 1, ..., N. By the Bramble-Hilbert lemma and scaling arguments [3, 11], if $u \in H^{k+1}(\mathcal{I}_h)$, then there holds the following optimal approximation property:

504 (A.2)
$$\|u - P_h^{-}u\|_{L^2(I)} + h^{\frac{1}{2}} \|u - P_h^{-}u\|_{L^2(\Gamma_h)} \le Ch^{k+1} \|u\|_{H^{k+1}(\mathcal{I}_h)},$$

505 where C is independent of h.

Then we prove the unique existence of $\mathcal{P}_{h}u$. By denoting $\mathcal{E} = \mathcal{P}_{h}u - P_{h}^{-}u$, $\psi = u - P_{h}^{-}u$, one has $\mathcal{P}_{h}u - u = \mathcal{E} - \psi$. The unique existence of $\mathcal{P}_{h}u$ can thus be obtained if we can prove existence of \mathcal{E} , since $\mathcal{P}_{h}u = \mathcal{E} + P_{h}^{-}u$. Denote by \mathcal{E}_{j} the restriction of \mathcal{E} on each I_{j} ; then

(A.3)
$$\mathcal{E}_{j}(x) = \sum_{\ell=0}^{k} \alpha_{j,\ell} P_{j,\ell}(x) = \sum_{\ell=0}^{k} \alpha_{j,\ell} P_{\ell}(s), \quad j \in \mathbb{Z}_{N}^{+},$$

where $P_{\ell}(s)$ is the ℓ th order standard Legendre polynomial on [-1, 1] with $s = \frac{2(x-x_j)}{h_j}$ and $P_{j,\ell}(x)$ is the scaled Legendre polynomial on I_j .

From (3.1a) and (A.1a), there holds $\int_{I_j} \mathcal{E}\varphi dx = 0 \ \forall \varphi \in P^{k-1}(I_j), \ j \in \mathbb{Z}_N^+$. Then, due to the orthogonality properties of the Legendre polynomials, we obtain

515
$$\alpha_{j,\ell} = 0, \quad \ell = 0, \dots, k-1, \ j \in \mathbb{Z}_N^+$$

⁵¹⁶ Hence, we have $\mathcal{E}_j(x) = \alpha_{j,k} P_k(s)$. Noting that analysis of $\alpha_{j,k}$ is the key factor to ⁵¹⁷ unique existence, we thus consider $\alpha_{j,k}$ when j is taken as different values, which are ⁵¹⁸ divided into the following three cases.

⁵¹⁹ When $j = \gamma$, we can easily obtain that $\mathcal{E}_j(x_{\gamma+\frac{1}{2}}) = 0$ by (3.1b) and (A.1b), which ⁵²⁰ yields $\alpha_{\gamma,k} = 0$.

521 When $j \in \mathbb{b}^+$, by (3.1c) and (A.1b), one has

$$\widehat{\mathcal{E}}_{j+\frac{1}{2}}^{p} = \left(\frac{1}{2} - (\lambda + \theta)\right)\psi_{j+\frac{1}{2}}^{+} \quad \forall j \in \mathbb{b}^{+}$$

523 which implies

52

(A.4)
⁵²⁴
$$\left(\frac{1}{2} + (\lambda + \theta)\right) \alpha_{j,k} + \left(\frac{1}{2} - (\lambda + \theta)\right) (-1)^k \alpha_{j+1,k} = \left(\frac{1}{2} - (\lambda + \theta)\right) \psi_{j+\frac{1}{2}}^+, \quad j \in \mathbb{D}^+$$

We see that the above system can be decoupled starting from the cell I_{γ} by letting $j_{26} = j = \gamma - 1$ and using $\alpha_{\gamma,k} = 0$. Moreover, it can be written into the form

527
$$\mathbb{A}_{\mathbb{b}^+} \alpha_{\mathbb{b}^+} = \Theta_{\mathbb{b}^+} \psi_{\mathbb{b}^+}$$

where the vectors $\alpha_{\mathbb{b}^+} = (\alpha_{\beta,k}, \dots, \alpha_{\gamma-1,k})^\top$, $\psi_{\mathbb{b}^+} = (\psi_{\beta+\frac{1}{2}}^+, \dots, \psi_{\gamma-\frac{1}{2}}^+)^\top$, the diagonal matrix $\Theta_{\mathbb{b}^+} = \operatorname{diag}(\frac{1}{2} - (\lambda + \theta), \dots, \frac{1}{2} - (\lambda + \theta))$ is of size $|\mathbb{b}^+| \times |\mathbb{b}^+|$, and the upper triangular matrix

531
$$\mathbb{A}_{\mathbb{b}^{+}} = \begin{pmatrix} \frac{1}{2} + (\lambda + \theta) & (\frac{1}{2} - (\lambda + \theta))(-1)^{k} & & \\ & \ddots & \ddots & \\ & & \frac{1}{2} + (\lambda + \theta) & (\frac{1}{2} - (\lambda + \theta))(-1)^{k} & \\ & & \frac{1}{2} + (\lambda + \theta) & \end{pmatrix}$$

⁵³² is also of size $|\mathbb{b}^+| \times |\mathbb{b}^+|$.

When $j \in \mathbb{b}^-$, by (3.1d) and (A.1b), one has

$$\widehat{\mathcal{E}}_{j-\frac{1}{2}}^{n} = \left(\frac{1}{2} + (\lambda - \theta)\right)\psi_{j-\frac{1}{2}}^{+} \quad \forall j \in \mathbb{b}^{-},$$

⁵³⁵ which implies

53

(A.5)

$$\left(\frac{1}{2} - (\lambda - \theta)\right) \alpha_{j-1,k} + \left(\frac{1}{2} + (\lambda - \theta)\right) (-1)^k \alpha_{j,k} = \left(\frac{1}{2} + (\lambda - \theta)\right) \psi_{j-\frac{1}{2}}^+, \quad j \in \mathbb{D}^-.$$

Similarly, $\alpha_{\gamma,k} = 0$ is still involved in (A.5), indicating that the above system can be decoupled starting from the cell I_{γ} by letting $j = \gamma + 1$ and using $\alpha_{\gamma,k} = 0$. Moreover, it can be written into the form

$$\mathbb{A}_{\mathbf{b}^{-}}\alpha_{\mathbf{b}^{-}} = \Theta_{\mathbf{b}^{-}}\psi_{\mathbf{b}^{-}},$$

where the vectors $\alpha_{\mathbf{b}^-} = (\alpha_{\gamma+1,k}, \dots, \alpha_{\beta-1,k})^\top$, $\psi_{\mathbf{b}^-} = (\psi_{\gamma+\frac{1}{2}}^+, \dots, \psi_{\beta-\frac{3}{2}}^+)^\top$, the diag-541 onal matrix $\Theta_{\mathbf{b}^-} = \operatorname{diag}(\frac{1}{2} + (\lambda - \theta), \dots, \frac{1}{2} + (\lambda - \theta))$ is of size $|\mathbf{\tilde{b}}^-| \times |\mathbf{\tilde{b}}^-|$, and the lower 542 triangular matrix 543

544
$$\mathbb{A}_{\mathbb{b}^{-}} = \begin{pmatrix} (\frac{1}{2} + (\lambda - \theta))(-1)^{k} & & \\ \frac{1}{2} - (\lambda - \theta) & (\frac{1}{2} + (\lambda - \theta))(-1)^{k} & & \\ & \ddots & \ddots & \\ & & & \frac{1}{2} - (\lambda - \theta) & (\frac{1}{2} + (\lambda - \theta))(-1)^{k} \end{pmatrix}$$

is also of size $|\mathbf{b}^-| \times |\mathbf{b}^-|$. 545

By the condition (2.2b), namely $\lambda > |\theta|$, we see that $\frac{1}{2} + (\lambda + \theta) \neq 0$ and 546 $\left(\frac{1}{2} + (\lambda - \theta)\right)(-1)^k \neq 0$; then due to the special form of $\mathbb{A}_{\mathbb{b}^+}$ and $\mathbb{A}_{\mathbb{b}^-}$, we deduce that 547 $|\mathbb{A}_{\mathbb{b}^+}| \neq 0, |\mathbb{A}_{\mathbb{b}^-}| \neq 0$, from which we can prove the unique existence of projection $\mathcal{P}_h u$. 548 In what follows let us prove the optimal approximation property of projection 549 $\mathcal{P}_h u$. By denoting $\mathbb{M}_+ = \mathbb{A}_{\mathbb{b}^+}^{-1} \Theta_{\mathbb{b}^+}$ and $\mathbb{M}_- = \mathbb{A}_{\mathbb{b}^-}^{-1} \Theta_{\mathbb{b}^-}$, we find it is sufficient to prove 550 that the matrix norms $\|\mathbb{M}_{\pm}\|_2$ are bounded. Here we pay attention to the fact that, 551 when $\lambda > |\theta|$, there always holds 552

$$\left|\frac{\left(\frac{1}{2} - (\lambda + \theta)\right)(-1)^k}{\frac{1}{2} + (\lambda + \theta)}\right| < 1, \qquad \left|\frac{\frac{1}{2} - (\lambda - \theta)}{\left(\frac{1}{2} + (\lambda - \theta)\right)(-1)^k}\right| < 1$$

which are involved in the entries of \mathbb{M}_+ and \mathbb{M}_- . Then we can obtain that $\|\mathbb{M}_+\|_2$ are 554 bounded if we follow the same lines as that in the analysis of $\|\mathbb{M}_{\pm}\|_2$ in [17, Lemma 555 3.1]. Since there is no essential difference, we do not present a detailed proof to save 556 space. 557

Consequently, by (A.2)558

559
$$\|\alpha_{\mathbb{b}^{+}}\|_{2}^{2} = \|\mathbb{M}_{+}\psi_{\mathbb{b}^{+}}\|_{2}^{2} \leq \|\mathbb{M}_{+}\|_{2}^{2} \cdot \|\psi_{\mathbb{b}^{+}}\|_{2}^{2} \leq C \|\psi_{\mathbb{b}^{+}}\|_{2}^{2}$$
560
$$\leq C \|u - P_{h}^{-}u\|_{L^{2}(\Gamma_{h})}^{2} \leq C h^{2k+1} \|u\|_{H^{k+1}(\mathcal{I}_{h})}^{2},$$

$$\|\alpha_{\mathbb{b}^{-}}\|_{2}^{2} = \|\mathbb{M}_{-}\psi_{\mathbb{b}^{-}}\|_{2}^{2} \le \|\mathbb{M}_{-}\|_{2}^{2} \cdot \|\psi_{\mathbb{b}^{-}}\|_{2}^{2} \le C\|\psi_{\mathbb{b}^{-}}\|_{2}^{2}$$

$$\leq C \|u - P_h^{-}u\|_{L^2(\Gamma_h)}^2 \leq Ch^{2k+1} \|u\|_{H^{k+1}(\mathcal{I}_h)}^2$$

By denoting $\alpha = (\alpha_{1,k}, \ldots, \alpha_{N,k})^{\top}$ and using $\alpha_{\gamma,k} = 0$, one has 564

565 (A.6)
$$\|\alpha\|_{2}^{2} = \|\alpha_{\mathbb{b}^{+}}\|_{2}^{2} + \|\alpha_{\mathbb{b}^{-}}\|_{2}^{2} \le Ch^{2k+1}\|u\|_{H^{k+1}(\mathcal{I}_{h})}^{2},$$

since $\alpha_{\gamma,k} = 0$. Thus, 566

$$\begin{aligned} \|\mathcal{E}\|_{L^{2}(I)}^{2} &= \sum_{j=1}^{N} \alpha_{j,k}^{2} \|P_{j,k}(x)\|_{L^{2}(I_{j})}^{2} = \sum_{j=1}^{N} \frac{h_{j} \alpha_{j,k}^{2}}{2k+1} \le Ch \|\alpha\|_{2}^{2}, \\ \mathcal{E}\|_{L^{2}(I_{1})}^{2} &= 2 \sum_{j=1}^{N} \alpha_{j,k}^{2} = 2\|\alpha\|_{2}^{2}, \end{aligned}$$

567

56

553

$$\|\mathcal{E}\|_{L^{2}(\Gamma_{h})}^{2} = 2\sum_{j=1}^{N} \alpha_{j,k}^{2} = 2\|\alpha\|_{2}^{2},$$

which, in combination with (A.6), gives us 568

569 (A.7)
$$\|\mathcal{E}\|_{L^{2}(I)} + h^{\frac{1}{2}} \|\mathcal{E}\|_{L^{2}(\Gamma_{h})} \le Ch^{k+1} \|u\|_{H^{k+1}(\mathcal{I}_{h})}.$$

where C is independent of h. Then the optimal approximation property (3.2) for $\mathcal{P}_h u$ 570

follows by combining (A.2) and (A.7). 571

REFERENCES

573	[1] M. AINSWORTH, P. MONK, AND W. MUNIZ, Dispersive and dissipative properties of discontinu-
574	ous Galerkin finite element methods for the second-order wave equation, J. Sci. Comput.,
575	27 (2006), pp. 5-40.

- J. L. BONA, H. CHEN, O. KARAKASHIAN, AND Y. XING, Conservative, discontinuous Galerkinmethods for the generalized Korteweg-de Vries equation, Math. Comp., 82 (2013), pp. 1401-1432.
- [3] S. C. BRENNER AND L. R. SCOTT, *The Mathematical Theory of Finite Element Methods*, 3rd
 ed., Texts in Appl. Math. 15, Springer, New York, 2008.
- [4] E. BURMAN, A. ERN, AND M. A. FERNÁNDEZ, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems, SIAM J. Numer.
 Anal., 48 (2010), pp. 2019–2042.
- [5] W. CAO, D. LI, Y. YANG, AND Z. ZHANG, Superconvergence of discontinuous Galerkin methods
 based on upwind-biased fluxes for 1D linear hyperbolic equations, ESAIM Math. Model.
 Numer. Anal., 51 (2017), pp. 467–486.
- [6] P. CASTILLO, B. COCKBURN, D. SCHÖTZAU, AND C. SCHWAB, Optimal a priori error estimates
 for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comp., 71 (2002), pp. 455–478.
- [7] Z. CHEN, H. HUANG, AND J. YAN, Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes, J. Comput. Phys., 308 (2016), pp. 198–217.
- [8] Y. CHENG, C.-S. CHOU, F. LI, AND Y. XING, L² stable discontinuous Galerkin methods for
 one-dimensional two-way wave equations, Math. Comp., 86 (2017), pp. 121–155.
- [9] Y. CHENG, X. MENG, AND Q. ZHANG, Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations, Math. Comp., 86 (2017), pp. 1233–1267.
- [10] Y. CHENG AND Q. ZHANG, Local analysis of the local discontinuous Galerkin method with
 generalized alternating numerical flux for one-dimensional singularly perturbed problem,
 J. Sci. Comput., 72 (2017), pp. 792–819.
- [11] P. G. CIARLET, *The Finite Element Method for Elliptic Problems*, Stud. Math. Appl. 4, North Holland, Amsterdam, 1978.
- [12] B. COCKBURN AND C.-W. SHU, TVB Runge-Kutta local projection discontinuous Galerkin
 finite element method for conservation laws. II. General framework, Math. Comp., 52
 (1989), pp. 411-435.
- [13] R. S. FALK AND G. R. RICHTER, Explicit finite element methods for symmetric hyperbolic
 equations, SIAM J. Numer. Anal., 36 (1999), pp. 935–952.
- [14] P. FU, Y. CHENG, F. LI, AND Y. XU, Discontinuous Galerkin methods with optimal L² accuracy
 for one dimensional linear PDEs with high order spatial derivatives, J. Sci. Comput., 78
 (2019), pp. 816–863.
- [15] S. GOTTLIEB, C.-W. SHU, AND E. TADMOR, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89–112.
- [16] G. S. JIANG AND C.-W. SHU, On a cell entropy inequality for discontinuous Galerkin methods,
 Math. Comp., 62 (1994), pp. 531–538.
- [17] J. LI, D. ZHANG, X. MENG, AND B. WU, Analysis of discontinuous Galerkin methods with
 upwind-biased fluxes for one dimensional linear hyperbolic equations with degenerate vari able coefficients, J. Sci. Comput., 78 (2019), pp. 1305–1328.
- [18] H. LIU AND N. PLOYMAKLAM, A local discontinuous Galerkin method for the Burgers-Poisson
 equation, Numer. Math., 129 (2015), pp. 321–351.
- [19] H. LIU AND J. YAN, The direct discontinuous Galerkin (DDG) methods for diffusion problems,
 SIAM J. Numer. Anal., 47 (2009), pp. 675–698.
- [20] X. MENG, C.-W. SHU, AND B. WU, Optimal error estimates for discontinuous Galerkin methods
 based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., 85 (2016),
 pp. 1225–1261.
- [21] X. MENG, C.-W. SHU, Q. ZHANG, AND B. WU, Superconvergence of discontinuous Galerkin
 methods for scalar nonlinear conservation laws in one space dimension, SIAM J. Numer.
 Anal., 50 (2012), pp. 2336–2356.
- [22] S. OSHER, Riemann solvers, the entropy condition, and difference approximations, SIAM J.
 Numer. Anal., 21 (1984), pp. 217–235.
- [23] W. H. REED AND T. R. HILL, Triangular Mesh Methods for the Neutron Transport Equation, Technical report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.

- [24] C.-W. SHU, Discontinuous Galerkin methods: General approach and stability, in Numerical So lutions of Partial Differential Equations, Adv. Courses Math. CRM Barcelona, Birkhäuser,
 Basel, 2009, pp. 149–201.
- [25] C.-W. SHU, Discontinuous Galerkin method for time-dependent problems: Survey and recent developments, in Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, IMA Vol. Math. Appl. 157, Springer, Cham, 2014, pp. 25–62.
- [26] Q. ZHANG AND C.-W. SHU, Stability analysis and a priori error estimates of the third order
 explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM
 J. Numer. Anal., 48 (2010), pp. 1038–1063.