A Complexity-theoretic Solution to Connes' Embedding Problem

Zhengfeng Ji (UTS:QSI)

HIT IM Zoom Seminar, 6 July 2020

MIP* = RE

arXiv:2001.04383, 14 Jan 2020

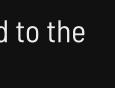
Complexity Theory

Turing Machines and the Halting Problem

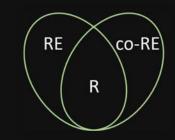
Turing machine (1936)

A Turing machine is a mathematical model of computation that defines an abstract machine, which manipulates symbols on a strip of tape according to a table of rules. (Wikipedia)

The **halting problem** is the problem of determining, when given the description of a Turing machine, whether the machine halts on empty input



RE is the set of problems that can be reduced to the halting problem



No algorithm can solve the halting problem

[Turing '36]

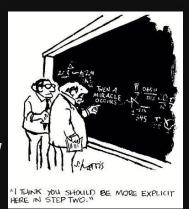
Nondeterminism and Proof Verification

- Nondeterministic Turing machines and proof verification
- What can a prover prove to a polynomial-time verifier?

- NP = ?
- What can a prover prove to a verifier with interaction?

■ Known: IP = PSPACE!

[Lund, Fortnow, Karloff and Nisan '90], [Shamir '92]



Arithmetisation

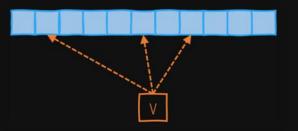
From Boolean logic problems to problems of polynomials over (large) finite fields

 $f(x_1, x_2, \ldots, x_m)$ has low-degree and vanishes on a subcube

Probabilistically Checkable Proofs (PCP)

ullet What can a prover prove to a verifier who flips r random coins and queries q bits from the proof?

 $\mathsf{PCP}(r,q)$



PCP Theorem. PCP $(O(\log n), O(1))$ = NP.

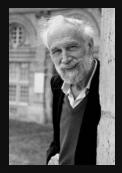
[Arora, Lund, Motwani, Sudan and Szegedy '92], [Arora and Safra '92]

- There is a format to write proofs so that if there is an error then errors are almost everywhere
- Multilinearity/low-degree tests: check if a function is close to or far from being a multilinear/low-degree polynomial

Tsirelson's Problem

Connes' Embedding Problem and Tsirelson's Problem

• Let ω be a free ultrafilter on the natural numbers and let R be the hyperfinite type ${\rm II_1}$ factor. Can every type ${\rm II_1}$ factor on a separable Hilbert space be embedded into some R^ω ?



- Kirchberg's QWEP conjecture in C*-algebra theory, Voiculescu's free entropy, Tsirelson's problem
- Why does CEP have anything to do with complexity theory?

... and now it is called "Tsirelson's problem" (rather than "Tsirelson's error").

- B. Tsirelson

Correlation Sets

The correlation set $C_{\mathrm{q}}(r,s)$ for integers r and s is the set of points $p=(p_{xyab})$ in $\mathbb{R}^{r^2s^2}$ where there are finite dimensional Hilbert spaces \mathcal{H}_A and \mathcal{H}_B , a unit vector $\phi\in\mathcal{H}_A\otimes\mathcal{H}_B$, and POVMs $\{A_a^x\}$, $\{B_b^y\}$ such that for all $x,y\in\{1,2,\ldots,r\}$, and $a,b\in\{1,2,\ldots,s\}$, $p_{xyab}=\phi^*(A_a^x\otimes B_b^y)\phi$.

The correlation set $C_{
m qa}(r,s)$ is the closure of $C_{
m q}(r,s)$.

The correlation set $C_{ ext{qc}}(r,s)$ is the set of points $p=(p_{xyab})$ in $\mathbb{R}^{r^2s^2}$ such that there is a separable Hilbert space \mathcal{H} , a unit vector $\phi\in\mathcal{H}$, POVMs $\{A^x_a\}$ and $\{B^y_b\}$ such that for all x,y,a,b, A^x_a and B^y_b commute and $p_{xyab}=\phi^*A^x_aB^y_b\phi$.

• $C_{\mathrm{loc}} \subsetneq C_{\mathrm{q}} \subsetneq C_{\mathrm{qa}} \subseteq C_{\mathrm{qc}}$

[Bell '64], [Solfstra '17]

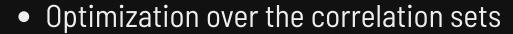
ullet Tsirelson's problem: Does $C_{
m qa}$ = $C_{
m qc}$?

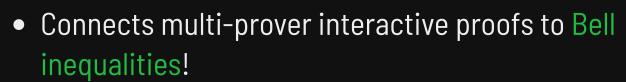
Nonlocal Games

- What can multiple provers prove to a verifier?
- A A B

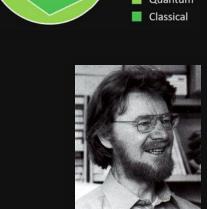
- Known MIP = NEXP
- What can multiple entangled provers prove to a verifier?

[Cleve, Høyer, Toner and Watrous '04]

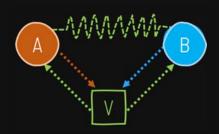




$$\langle A_0B_0+A_0B_1+A_1B_0-A_1B_1
angle \leq 2$$



- Definition of a nonlocal game G
 - Finite question sets ${\mathcal X}$ and ${\mathcal Y}$ and answer sets ${\cal A}$ and ${\cal B}$



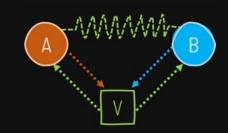
- lacksquare Question distribution μ over $\mathcal{X} imes \mathcal{Y}$
- Decider $\mathcal{D}: \mathcal{X} imes \mathcal{Y} imes \mathcal{A} imes B
 ightarrow \{0,1\}$
- Family of games defined by verifier $\mathcal{V} = (\mathcal{S}, \mathcal{D})$ $(L^{\mathrm{A}}(z), L^{\mathrm{B}}(z))$

- lacktriangle Turing machine ${\cal S}$ takes input (n,\dots)
- Turing machine ${\cal D}$ takes input (n, x, y, a, b)
- lacksquare The n-th game \mathcal{V}_n defined by \mathcal{S}_n and \mathcal{D}_n
- A family of linear functionals on the correlation sets (for increasing r,s) from a pair of Turing machines

Entangled Value and Commuting Operator Value

ullet Value of p for a nonlocal game G

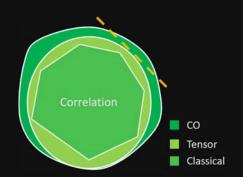
$$\operatorname{val}(G,p) = \mathop{\mathbb{E}}_{(x,y)\sim \mu} \sum_{a,b ext{ accepted by } \mathcal{D}_{x,y}} p_{xyab}$$



- ullet Entangled value $\mathrm{val}^*(G) = \max_{p \in C_{\mathrm{qa}}} \mathrm{val}(G,p)$
- ullet MIP* corresponds to the approximation of ${
 m val}^*$
- Commuting-operator value

$$\operatorname{val^{co}}(G) = \max_{p \in C_{\operatorname{qc}}} \operatorname{val}(G,p)$$

 \bullet If Tsirelson's problem has a positive answer, then val^* equal to val^{co} for all games



Two Algorithms

- ullet Algorithm 1: Exhaustively search for better tensor-product strategies of increasing Hilbert space dimensions and approximation precision A sequence of values approaching val^* from **below**
- Algorithm 2: NPA SDP hierarchy / Non-commutative Positivstellensatz

[Navascués, Pironio, and Acín '08], [Doherty, Liang, Toner, and Wehner '08] [Helton and McCullough '04]

A sequence of values approaching val^{co} from **above**

Algorithm 1
$$ightarrow$$
 $ext{val}^* \leq ext{val}^{ ext{co}} \; \leftarrow \; ext{Algorithm 2}$

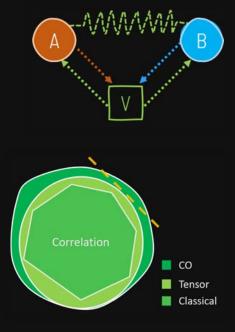
- Algorithm 1 establishes that MIP* ⊆ RE
- ullet Computability consequences of CEP and TP CEP true \Longrightarrow TP true \Longrightarrow an algorithm to approximate val^*

Main Result and Implications

- MIP* = RE: no algorithm that approximate val^* because it is as hard as the halting problem
- A negative answer to Tsirelson's problem
 Infinite quantum systems cannot be approximated by finite ones

$$C_{\text{loc}} \subsetneq C_{\text{qa}} \subsetneq C_{\text{qc}}$$

Could there be an experimental test for infinite dimensionality (like Bell tests for quantumness)?



 A negative answer to Connes' embedding problem via its known equivalence to Tsirelson's problem

[Fritz '12], [Junge, Navascués, and Palazuelos et al. '11], [Ozawa '13]

Proof Overview

Compression Theorem

Compression Theorem. There is an algorithm $ootnotesize{Compress}$ that on input $\mathcal{V}=(\mathcal{S},\mathcal{D})$ outputs $\mathcal{V}^\sharp=(\mathcal{S}^\sharp,\mathcal{D}^\sharp)$ such that for all $n\geq n_0$

- 1. (Completeness). If $\mathrm{val}^*(\mathcal{V}_{2^n})=1$ then $\mathrm{val}^*(\mathcal{V}_n^\sharp)=1$.
- 2. (Soundness). If $\mathrm{val}^*(\mathcal{V}_{2^n}) \leq \frac{1}{2}$ then $\mathrm{val}^*(\mathcal{V}_n^\sharp) \leq \frac{1}{2}$.
- 3. (Entanglement). $\mathcal{E}(\mathcal{V}_n^\sharp) \geq \maxig\{\mathcal{E}(\mathcal{V}_{2^n}), 2^nig\}.$

Kleene's Recursion Theorem

ullet For all Turing machine ${\cal M}$, consider verifier ${\cal V}^{
m Halt}$

Turing machine $\mathcal{D}^{ ext{Halt}}$:

- 1. Simulate ${\mathcal M}$ for n steps. If ${\mathcal M}$ halts, accept.
- 2. Compute $(\mathcal{S}^{\sharp}, \mathcal{D}^{\sharp}) = \operatorname{Compress}(\mathcal{S}^{\sharp}, \mathcal{D}^{\operatorname{Halt}})$.
- 3. Accept iff $\mathcal{D}^{\sharp}(n,x,y,a,b)$ accepts.
- ullet Kleene's recursion theorem: $\mathcal{D}^{ ext{Halt}}$ above is well-defined

MIP* Protocol for the Halting Problem

- ullet For all Turing machine ${\cal M}$
 - 1. If ${\mathcal M}$ halts, then ${
 m val}^*({\mathcal V}_{n_0}^{
 m Halt})=1$

If the Turing machine ${\cal M}$ halts in T steps and n < T $\le 2^n$, then by the compression

Turing machine $\mathcal{D}^{ ext{Halt}}$:

- 1. Simulate ${\mathcal M}$ for n steps. If ${\mathcal M}$ halts, accept.
- 2. Compute $(\mathcal{S}^{\sharp}, \mathcal{D}^{\sharp}) = \mathrm{Compress}(\mathcal{S}^{\sharp}, \mathcal{D}^{\mathrm{Halt}}).$
- 3. Accept iff $\mathcal{D}^\sharp(n,x,y,a,b)$ accepts.

theorem $\cdots = \mathrm{val}^*(\mathcal{V}_n^{\mathrm{Halt}}) = \mathrm{val}^*(\mathcal{V}_n^\sharp) = \mathrm{val}^*(\mathcal{V}_{2^n}^{\mathrm{Halt}}) = 1.$

2. If ${\mathcal M}$ does not halt, then $\operatorname{val}^*({\mathcal V}_{n_0}^{\operatorname{Halt}}) \leq \frac{1}{2}$

Entanglement $\mathcal{E}(\mathcal{V}_n^{\mathrm{Halt}}) = \mathcal{E}(\mathcal{V}_n^\sharp) \geq \mathcal{E}(\mathcal{V}_{2^n}^{\mathrm{Halt}}) \geq \cdots$

Explicit Separation Between $C_{ m qa}$ and $C_{ m qc}$

ullet Consider verifier $\mathcal{V}^{\operatorname{Sep}} = (\mathcal{S}^\sharp, \mathcal{D}^{\operatorname{Sep}})$

Turing machine $\mathcal{D}^{\operatorname{Sep}}$:

- 1. Compute a description of game $\mathcal{V}_{n_0}^{\mathrm{Sep}}.$
- 2. Run NPA on $\mathcal{V}_{n_0}^{\operatorname{Sep}}$ for n steps. If NPA halts, then accept.
- 3. Compute $(\mathcal{S}^{\sharp}, \mathcal{D}^{\sharp}) = \operatorname{Compress}(\mathcal{S}^{\sharp}, \mathcal{D}^{\operatorname{Sep}})$.
- 4. Accept iff $\mathcal{D}^\sharp(n,x,y,a,b)$ accepts.
- ullet Claim: $\mathrm{val}^*(\mathcal{V}^{\mathrm{Sep}}_{n_0}) \leq rac{1}{2}$ and $\mathrm{val^{co}}(\mathcal{V}^{\mathrm{Sep}}_{n_0}) = 1$
- ullet If $\mathrm{val^{co}}(\overline{\mathcal{V}_{n_0}^{\mathrm{Sep}}}) < 1$, then $\mathrm{val^*}(\overline{\mathcal{V}_{n_0}^{\mathrm{Sep}}}) = 1$, a contradiction

Proof Techniques

Rigidity and Self-testing

• The players have to measure the honest measurement to achieve a near-optimal value

From
$$\mathrm{val}^*$$
 to $(|\psi\rangle,\{A^x_a\},\{B^y_b\})$

Magic square game

 $\begin{bmatrix} x_1 & \dots & x_2 & \dots & x_3 \\ & & & & & & \\ x_4 & \dots & x_5 & \dots & x_6 \\ & & & & & & \\ x_7 & \dots & x_8 & \dots & x_9 \end{bmatrix}$

Send Alice a row or a column, send Bob a variable in it; accept if

- 1. the row/column constraint is satisfied, and
- 2. Alice and Bob's answers are consistent

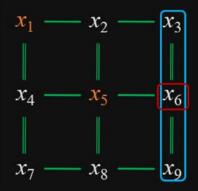
$$ullet$$
 The entangled value $\mathrm{val}^*(G_{\boxplus})=1$

$$X_1 = \sigma^X \otimes I$$
 , ..., $X_5 = \sigma^Z \otimes I$, ..., $\ket{\psi} = \ket{ ext{EPR}}^{\otimes 2}$

$$\ket{ ext{EPR}} = rac{\ket{00} + \ket{11}}{\sqrt{2}} \ \sigma^X = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \ \sigma^Z = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$$

 The rigidity of the magic square game: all about commutativity and anticommutativity

If the value of a strategy is at least 1-arepsilon , then $X_1X_5 \, pprox_{\sqrt{\epsilon}} \, -X_5X_1.$



Let R_0 , R_1 be two observables, if $R_0R_1 pprox -R_1R_0$, then there is a local isomorphism ϕ such that up to the isomorphism

$$R_0pprox\sigma^X\otimes I,\quad R_1pprox\sigma^Z\otimes I.$$

- ullet Approximate representation of the group generated by σ^X and σ^Z
- Inverse and stability theorems for approximate representations of finite groups

[Gowers and Hatami '15]

Efficient Self-test for Multiple Qubits

Pauli basis game: rigidity + low-degree test

[Natarajan and Vidick '18], [Natarajan and Wright '19]

Rigidity Theorem. For any strategy that uses measurement $\hat{A}^{\mathrm{Pauli},W}$ for the question (Pauli,W) and has value at least $1-\varepsilon$, there is a local isomorphism $\phi=\phi_A\otimes\phi_B$ such that

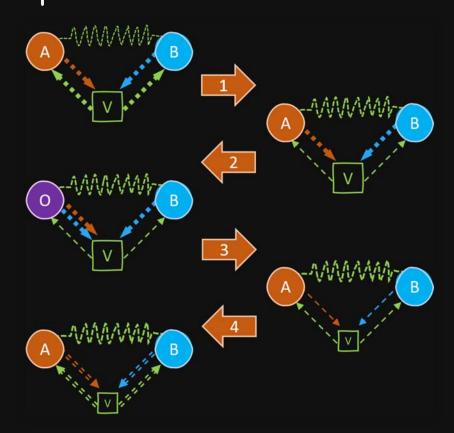
$$A_z^{{
m Pauli},W}\otimes I_Bpprox_{\delta(arepsilon)}\,\sigma_z^W\otimes I_B,$$
 where $A_z^{{
m Pauli},W}=\phi_A\hat{A}^{{
m Pauli},W}\phi_A^*.$

ullet An efficient self-test for Pauli X/Z measurements on EPRs For self-testing of n EPRs, the questions have length $\operatorname{polylog}(n)$

Four Steps of Compression

- 1. IntrospectionQuestion reduction
- 2. OracularisationPreprocessing for PCP
- 3. PCP
 Answer reduction
- 4. Parallel repetition

 Gap recovery



Introspection + PCP

Verifier: I am lazy. How about you two come up with the questions yourselves, answer them, and prove to me that I would have accepted the questions and answers?

Provers: What?!

[Natarajan and Wright '19]

Introspection

• Let L^A and L^B be functions such that $(L^A(z),L^B(z))$ is the question distribution μ for z the σ^Z measurement outcome on EPRs

Desirable situation: Verifier simply sends (Intro,A) to Alice and (Intro,B) to Bob

The player receiving (Intro,v) replies (y,a) where for $v\in\{A,B\}$

- 1. the introspectively sampled question y is supposedly $L^v(z)$ and,
- 2. a is the answer in the original game for question y
- Why would the provers follow the commands?

Control the information that the provers can and cannot see using the Pauli basis game and Heisenberg uncertainty

Answer Reduction Using PCPs

Basic idea

The verifier needs to check if $\mathcal{D}(n,x,y,a,b)$ accepts

Verifier: "Do not send me the long answers a, b, please compute a probabilistically checkable proof for the fact that $\mathcal{D}(n,x,y,a,b)$ accepts"

Recursive Gap-preserving Compression

Turing machine $\mathcal{D}^{ ext{Halt}}$:

- 1. Simulate ${\mathcal M}$ for n steps. If ${\mathcal M}$ halts, accept.
- 2. Compute $(\mathcal{S}^{\sharp}, \mathcal{D}^{\sharp}) = \operatorname{Compress}(\mathcal{S}^{\sharp}, \mathcal{D}^{\operatorname{Halt}})$.
- 3. Accept iff $\mathcal{D}^\sharp(n,x,y,a,b)$ accepts.

 \mathcal{S}^{\sharp} is universal

 $\left(L^{
m A}(z),L^{
m B}(z)
ight)$

- Two problems are important
 - 1. What kind of distributions/functions can be introspectively sampled
 - 2. What is the distribution of the compressed game
- Match the two?
- Conditionally linear distributions and normal-form nonlocal games

Conclusions

- Recursive gap-preserving compression of two-prover one-round protocols
- Compression theorem + Kleene's recursion theorem prove RE ⊆ MIP*
- MIP* = RE follows as MIP* ⊆ RE
- Negative answers to both Tsirelson's problem and CEP
- Open problems:
 - 1. Simpler proofs?
 - 2. Does $MIP^{CO} = coRE$?
 - 3. Explicit counter-examples to CEP

Physics

- 1935 EPR paradox, entanglement
- 1964 Bell inequality
- 1990's Tsirelson's problem

Computer Science

- 1936 Turing's Halting problem
- 1970's Complexity theory
- 1990's PCP theorem

Mathematics

- 1930 von Neumann algebra
- 1976 Connes
- 1993 Kirchberg

 $MIP^* = RE$

Thank you!

Sydney Quantum Academy (SQA) PhD Scholarships

- The SQA Primary PhD Scholarship provides a stipend of \$35,000 per annum AUD for a maximum duration of four years. Student tuition fees will be waived for successful international applicants.
- For more information, see

SQA: https://www.sydneyquantum.org/research/phd-scholarships

UTS: https://qsi.uts.edu.au

