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Turinj Macl\ine,s ancl j[ t\e, Haljfinj ProUe,m

e Turing machine (1936)

A Turing machine is a mathematical model of computation that
defines an abstract machine, which manipulates symbols on a
strip of tape according to a table of rules. (Wikipedia)

e The halting problem is the problem of WEEEEEEEEEEE

determining, when given the
description of a Turing machine,
whether the machine halts on empty input

RE is the set of problems that can be reduced to the
halting problem

No algorithm can solve the halting problem

[Turing '36]




Non&e} erminism an(l Pmo# Ve,rh[‘icajr lon

e Nondeterministic Turing machines and proof verification

e What can a prover prove to a polynomial-time verifier? 4@ e
s NP=7

o What ca.n a prover prove to a verifier with "I,_,I,I_I_ _____ T

interaction?

m Known: IP = PSPACE!
[Lund, Fortnow, Karloff and Nisan ‘90] [ Shamir '92]

‘/ Hmrec\r_sp

m Arithmetisation e s

From Boolean logic problems to problems of polynomials over
(large) finite fields

f(a:l, Ly, wm) has low-degree and vanishes on a subcube




Pro\)a&)ilisjr MHJ u\e,c'(a\)le, Promfs (PCP)
What can a prover prove to a PCP(r, q) ENEEEEEENEN

verifier who flips r random coins o
and queries q bits from the proof? =

PCP Theorem. PCP(O(logn), O(1)) = NP.

[Arora, Lund, Motwani, Sudan and Szegedy '92], [Arora and Safra '92]

There is a format to write proofs so that if there is an error then errors
are almost everywhere

Multilinearity/low-degree tests: check if a function is close to or far
from being a multilinear/low-degree polynomial




Tsire,lson’s Pro\)le,m




(,onne,s’ Em\)e,cuinj Pro\)le,m an& Tsire,lson’s Proue,m

o Letw be afree ultrafilter on the natural numbers
and let R be the hyperfinite type ll; factor. Can = )

every type ll; factor on a separable Hilbert space
be embedded into some R*?

= Kirchberg's QWEP conjecture in C*-algebra
theory, Voiculescu's free entropy, Tsirelson's problem

e Why does CEP have anything to do with complexity theory?

... and now it is called "Tsirelson’s problem”(rather than
"Tsirelson’s error”).

— B. Tsirelson




Corre,lajrion Se,Jf 5

The correlation set Cy (7, s) for integers 7 and s is the set of
2.2
points p = (Pgyap) iNR™ ° where there are finite dimensional

Hilbert spaces H 4 and H g, a unit vector € H4 ® Hp, and
POVMs { A%}, {B; } suchthatforallz,y € {1,2,...,7} and

a,be{1,2,...,s} Poya = ¢* (AL ® B})o.

The correlation set C, (7, §) is the closure of Cy (7, ).

ALY

W co

B Tensor
B Classical

The correlation set Cqc (7, $) is the set of points p = (pgyap ) in R™ %" such that there is
a separable Hilbert space 7, a unit vector ¢ € H, POVMs { AZ } and { B } such that for

allx, y,a,b, AZ and Bg commute and payqp = @* A% ngﬁ.

® Cloc SCq S Cqa € Cyc

[Bell '64] [Solfstra '17]

e Tsirelson's problem: Does Ca = Cc?




Norloeal Games

a verifier?

e \What can multiple provers prove to .
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= Known MIP = NEXP 1Y Wy
e What can multiple entangled
provers prove to a verifier?
m M|P*=7 [Cleve, Hayer, Toner and Watrous 04]

B Quantum
B Classical

e (Optimization over the correlation sets

e Connects multi-prover interactive proofs to Bell
Inequalities!

(AgBy + AgB1 + A1By — A1 By) <2




e Definition of a nonlocal game & .

= Finite question sets A and ) and answer sets =~ ., <
A and B hilg
m Question distribution pt over X X Y
= DeciderD: X x Y x A x B—{0,1}
e Family of games defined by verifier V = (S, D) (LA (2), LB (2))

= Turing machine &S takes input (7, . . . ) 28

= Turing machine D takes input
(n7 :E, y? a? b)
= The n-th game V,, defined by S,, and D,,

e Afamily of linear functionals on the correlation sets (for increasing 7, s)
from a pair of Turing machines

B Quantum
B Classical




Enjfanjle,cl Value, ancl Commujrinj OFeranor Value,

Value of p for a nonlocal game G ‘ AMAAAAA .

(way) ~ U )

a,b accepted by D, ,

Entangled value val* (G) = max val(G, p)
pECqa

MIP* corresponds to the approximation of val*

Commuting-operator value

val®®(G) = max val(G, p)

9 Oy

If Tsirelson's problem has a positive answer, then val* equal to val®
for all games




Two Aljorijr l\ms

Algorithm 1: Exhaustively search for better tensor-product strategies of
increasing Hilbert space dimensions and approximation precision

A sequence of values approaching val® from below

Algorithm 2: NPA SDP hierarchy / Non-commutative Positivstellensatz

[Navascués, Pironio, and Acin '08], [ Doherty, Liang, Toner, and Wehner 08]
[Helton and McCullough 04]

A sequence of values approaching val®® from above

Algorithm1 — wval* < val®® < Algorithm 2

Algorithm 1 establishes that MIP* € RE
Computability consequences of CEP and TP

CEPtrue — TPtrue — an algorithm to approximate val*




Main Re,suljr ancl lmFIicanions

e MIP*=RE: that approximate val*
because it is as hard as the halting problem

e A negative answer to Tsirelson’s problem

Infinite quantum systems cannot be approximated
by finite ones

Cloc & an ch

Could there be an experimental test for infinite
dimensionality (like Bell tests for quantumness)?

e Anegative answer to Connes embedding problem via its known
equivalence to Tsirelson's problem
[Fritz '12] [Junge, Navascués, and Palazuelos et al. '11], [Ozawa '13]
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(LomPre,ssion n\e,ore,m
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Compression Theorem. There is an algorithm Compress that on input
Y = (S, D) outputs V¥ = (S*, D) such that for all n. > nyg

1. (Completeness). If val* (Vyn ) = 1 thenval*(V}) = 1.
2.(Soundness). If val* (Vo) < 1 then val*(V}) <
3. (Entanglement). E(V?) > max{c‘: Von ), 2" }

2 .




Kle,e,ne,’s Re,cursion H\e,ore,m

e For all Turing machine M, consider verifier YH31

Turing machine DHalt.

1. Simulate M for n steps. If M halts, accept.
2. Compute (S*, D) = Compress(S¥, DHelt).
3. Accept iff D (n, z, y, a, b) accepts.

e Kleene's recursion theorem: DHalt above is well-defined




MU)* Projf ocol 1for Jr l\e, Haljrinj ProUe,m

e For all Turing machine M

Turi hi DHalt:
1. If M halts, then uring machine
val* (V,,I;Ialt ) —1 1. Simulate M for n steps. If M halts,

accept.

. . 2. Compute
If the Turing machine ./\/lgalts (5%, D) — Compress(S!, D).
inT’ Steps andn <1’ = 2 ! 3. Accept iff D*(n, x, y, a, b) accepts.
then by the compression
theorem

. = val* (V7I;Ialt) — val* (V’g) — val* (VI;IZalt) — 1.
2.1f M does not halt, then val* (VHalt)
Entanglement S(VHalt) g(yﬂ) > g(VHalt)




Elf)licijr Se,FaraJrion Bejfween an an& ch
e Consider verifier V5 = (S*, D5°P)

Turing machine D>°P:

1. Compute a description of game V,Soep.

2. Run NPA on Vs(f’p for o steps. If NPA halts, then accept.
3. Compute (S, D*) = Compress(S*, D5P).

4. Accept iff D¥ (n, z, y, a, b) accepts.

e Claim: val* (Vsoep) < %and val®® (V,Sfp) =1

e If val®® (V) < 1, thenval* (V) = 1, acontradiction
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Rijiclijrj and S&W-Jre,sjrinj

e The players have to measure the honest measurement

) ) X - X X3
to achieve a near-optimal value
Fromval* to (|¢), {42}, {B; }) xq — x5 — (g
e Magic square game a e
Send Alice a row or a column, send Bob a variable in |()()> + |11>
it; accept if [EPR) = V2
1. the row/column constraint is satisfied, and ¥ 0 1
2. Alice and Bob's answers are consistent 7 = ( 1 0 )
z (1 0
e The entangled value val* (Gy) = 1 =\ 1

X1 =0X®1I..X;=0?®1..,|¢) = [EPR)®?




e The rigidity of the magic square game: all about e

o o . .. X1 x2 x3
commutativity and anticommutativity
Xy X [xﬁj
If the value of a strateqgy is at least 1 — &, then
X1X5 %\/g —X5X1. X7 - Xg - X9

Let Ry, R be two observables, if RgR1 ~ —R1 Ry, then
there is a local isomorphism ¢ such that up to the
isomorphism

R()%O'X@I, R1%0'Z®I.

X A

e Approximate representation of the group generated by o> and o

e |nverse and stability theorems for approximate representations of finite
groups

[Gowers and Hatami '15]




Efficient Self-test for Mu”if)le, (Qubits

e Pauli basis game: rigidity + low-degree test
[Natarajan and Vidick 18], [ Natarajan and Wright 19]

.« o e ~Pauli,lW
Rigidity Theorem. For any strategy that uses measurement A

for the question (Pauli, W) and has value at least 1 — &, there is a
local isomorphism ¢ = ¢4 ® ¢ p such that

A @ I Rse) 02 R Ip,

: ~Pauli,W
where AL2 W — ¢, A ¢ .

e An efficient self-test for Pauli X/Z measurements on EPRs

For self-testing of 7 EPRs, the questions have length polylog(n)




\:our Sjre,Ps mf ComFre,ssion

1. Introspection

Ouestion reduction

»
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2. Oracularisation

Preprocessing for PCP
3. PCP

Answer reduction

4. Parallel repetition

Gap recovery




Imlros[)e,cjfion T PCP

Verifier: | am lazy. How about you two come up with the
questions yourselves, answer them, and prove to me that |
would have accepted the questions and answers?

Provers: What?!

[Natarajan and Wright 19]




Injrrost)e,cjr lon

e Let L# and L be functions such that (L4 (2), L (2)) is the
question distribution w for z the o? measurement outcome on EPRs

Desirable situation: Verifier simply sends (Intro, A) to Alice and
(Intro, B) to Bob

The player receiving (Intro, v) replies (v, a) where forv € {A, B}
1. the introspectively sampled question ¥ is supposedly L” (z) and,

2. a is the answer in the original game for question y

() [00) + |11)

Control the information that the provers can and cannot .
see using the Pauli basis game and Heisenberg
uncertainty




Answu Re,clucjrion Usinj PCPS

e Basicidea
The verifier needs to check if D(n, x, y, a, b) accepts

Verifier: "Do not send me the long answers a, b, please compute a
probabilistically checkable proof for the fact that D(n, z, y, a, b)

accepts’




Re,wrsive, GGP‘FY'&S&Winj CONFY&SSiOH

Turing machine DHalt.

1. Simulate M for n steps. If M halts, accept. :
2. Compute (S*, D*) = Compress(S*, D). S* is universal
3. Accept iff D*(n, , y, a, b) accepts.

e Two problems are important (L* (2), LB (2))

1. What kind of distributions/functions can be
Introspectively sampled

2. What is the distribution of the compressed game
e Match the two?

e Conditionally linear distributions and normal-form nonlocal games




Conclusions

Recursive gap-preserving compression of two-prover one-round
protocols

Compression theorem + Kleene's recursion theorem prove RE € MIP*
MIP* = RE follows as MIP* € RE
Negative answers to both Tsirelson's problem and CEP

Open problems:

1. Simpler proofs?

2. Does MIP® = coRE?
3. Explicit counter-examples to CEP




Pl\\ljsics
e 1935 EPR paradox,
entanglement

Comr}ujr er Scie,nce,

e 1936 Turing's Halting
problem

e 1964 Bell inequality e 1970's Complexity theory

e 1990's Tsirelson's problem e 1990's PCP theorem

~ 1 7

MIP* = RE

MaH\emaJrics

e 1930 von Neumann
algebra

e 1976 Connes
e 1993 Kirchberg
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