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I: Setup and a general question

3 / 29



Setup and notations

G : a countable infinite group.

X : an infinite space.

G y X : an action, i.e. a group homomorphism G → Perm(X ).

H: the stabilizer subgroup of any point x ∈ X , i.e.

H = {s ∈ G : sx = x}.

L(G ): the group von Neumann algebra, i.e.

L(G ) = span{λg : g ∈ G}SOT
,

where λg ∈ U(`2(G )) is defined by λg (δs) = δgs for all s ∈ G .

L(G ) is a (II1) factor, i.e. Z(L(G )) = C iff G is I.C.C., i.e.
]{sgs−1 : s ∈ G} =∞, ∀ g 6= e.

Note that H < G induces L(H) < L(G ).
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Transitive actions

Definition ((Sharply) n-transitive actions)

An action G y X is faithful if G → Perm(X ) is injective.
It is n-transitive if for every n-tuples (x1, . . . , xn) and (y1, . . . , yn) in X n

with distinct entries, there exists some g ∈ G s.t. gxi = yi for all
i = 1, . . . , n.
It is highly transitive if it is n-transitive for all n ≥ 2.
It is sharply n-transitive if it is n-transitive and the element g above is
unique.
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Examples of n-transitive actions

(1) 1-transitive=transitive, i.e. a left translation G y G/H.

(2) Examples of 2-transitive actions:

(i) Let G y A be an action. Consider the affine action Ao G y A, i.e.
(ag).x = a + g .x . One can check this affine action is 2-transitve iff
G y A \ {0A} is transitive. E.g. Q2 o SL2(Q) y Q2 is 2-transitive.

(ii) Left-right multiplication G ×G y G : (s, t).g = sgt−1 is 2-transitive iff
G has exactly 2 conjugacy classes.

(3) Examples of 3-transitive actions:

(i) PSL2(Q) y P1(Q), where P1(Q) := Q2/∼ and (x , y) ∼ (−x ,−y).

(ii) the affine action Ao G y A, where A = ⊕ZZ/2Z and G = Autf (A).

(4) Examples of n-transitive actions: S∞ y N.
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On highly transitive actions

The 1st explicit example of faithful, highly transitive action of free groups
are constructed by McDonough in 1976, which relies on the lemma below.

Lemma (McDonough ’76)

Let X = Z, and let s ∈ Perm(X ) be defined by s(i) = i + 1, ∀ i ∈ X.
Suppose t is an infinite cycle (i.e. 〈t〉y X \ Fix(t) is transitive and
](X \ Fix(t)) =∞) satisfying the conditions

(i) If t(i) 6= i , then t(j) 6= j , ∀ j > i ;

(ii) Fix(t) 6= ∅.
Then 〈s, t〉 is highly transitive on X .

Remark: Many group theorists studied the question of characterizing
which groups admit faithful highly transitive actions. Huge classes of
groups are known to admit faithful highly transitive actions.
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Some properties of n-transitive actions

(1) (n + 1)-transitivity ⇒ n-transitivity.

(2) If G y X is 2-transitive, then H is a maximal subgroup in G . Indeed,
it is an exercise to check G = H t HsH for any s ∈ G \ H.

(3) If G y X is faithful and 2-transitive, then G is I.C.C., i.e.
]{tgt−1 : t ∈ G} =∞ for all g 6= e.

Proof.

Let e 6= g ∈ G , say y := gx 6= x (by faithfulness). Let H = Stab(x). Take
infinitely many distinct pts zi ∈ X \ {x}, and define hi (x , y) = (x , zi ), ∀ i .
Then

high
−1
i 6= hjgh

−1
j , ∀ i 6= j .

Indeed, h−1j hig(h−1j hi )
−1x = h−1j hiy 6= y = gx .
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A general question

Question

Let n ≥ 2. Assume G y X is a faithful and n-transitive action and H is
the stabilizer subgroup of any point x ∈ X, can we describe all
intermediate von Neumann algebras between L(H) and L(G )?

RK: in the above context, the following hold.

H is a maximal subgroup in G (with infinite index);

H does not contain non-trivial normal subgroups of G .

Proof.

Assume K C G and K ⊆ H. Then g−1Kg = K fixes x , thus, K fixes
gx , ∀g ∈ G . Transitivity implies X = Gx , thus
K ⊆ Ker(G → Perm(X )) = {e}.
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Some typical results on studying intermediate vN algs

Who? When? Setting Assumptions

Nakamura-Takeda,
N.Suzuki ’60 NG ⊆ N N: a II1 factor; G : finite;

(NG )′ ∩ N = C
Choda ’78 N ⊆ N o G N: a II1 factor; G y N outer

Packer ’85 L∞(Y ) o G ⊆
L∞(X ) o G

G y X � Y p.m.p. free er-
godic

Ge-Kadison ’96 M ⊆ M⊗̄N M: a factor

Izumi-Longo-Popa ’98 NG ⊆ N N: a factor with sep.predual;
G : cpt; (NG )′ ∩ N = C

Y.Suzuki ’19 L∞(Y ) o G ⊆
L∞(X ) o G

G y X � Y non-singular free

Chifan-Das ’19 L(G ) ⊆
L∞(X ) o G

G y X : compact action

Chifan-Das ’19 L(H) ⊆ L(G ) H C G , L(H)′ ∩ L(G ) = C
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II: Motivation
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Motivation I

Definition

A subfactor/subalgebra is maximal if it is not contained in any proper
subalgebra other than itself.

Question (Ge, ’03)

Can a non-hyperfinite factor of type II1 have a hyperfinite subfactor
as its maximal subfactor?

Can a maximal subfactor of the hyperfinite factor of type II1 have an
infinite index Jones index?

Can LF∞ be embedded in LF2 as a maximal subfactor?

A natural approach: If H is a maximal subgroup in G (with infinite index),
then perhaps we may show L(H) is maximal in L(G ).
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Bad news: Maximal subgroup does not yield maximal
subalgebra

In general, H is maximal in G 6⇒ L(H) is also maximal in L(G ).

An example:

Consider G = K × K y X := K defined by (s, t).k = skt−1.

Fix x = eK ∈ X , then H = Stab(x) = ∆(G ) = {(k, k) : k ∈ K} is
maximal iff K is simple.

Notice that L(H) ( Fix(φ) ( L(G ), where φ ∈ Aut(L(G )) is induced by
the flip automorphism φ ∈ Aut(G ), i.e. φ(s, t) = (t, s).

Indeed, u(eK ,s) + u(s,eK ) ∈ Fix(φ) \ L(H) for all eK 6= s ∈ K .

u(eK ,s) ∈ L(G ) \ Fix(φ) for all eK 6= s ∈ K .
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Good news: Many known works on the existence of
maximal subgroups with infinite index

A nice survey on the state of the art can be found in “Maximal subgroups
of countable groups, a survey” arXiv: 1909.09361. A pioneering result is

Theorem (Margulis, Sŏıfer,’77-81)

For n ≥ 3, there exists a maximal subgroup of SLn(Z) of infinite index.

However, the proof relies on Zorn’s lemma, thus it is hard to put hands on
the algebraic properties of maximal subgroups above.
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Motivation II

We initiated the study of maximal Haagerup von Neumann subalgebras
together with Adam Skalski in 2019.

Definition (Maximal Haagerup von Neumann algebras)

Let N ⊆ M be an inclusion of von Neumann algebras. We say N is a
maximal Haagerup von Neumann subalgebra if N has Haagerup property
and for every P s.t. N ( P ⊆ M, P does not have Haagerup property.

Question

Is L(SL2(k)) a maximal Haagerup von Neumann subalgebra in
L(k2 o SL2(k)), where k = Z or Q?

Recall that the affine action G := Q2 o SL2(Q) y Q2 := X is 2-transitive
and H := Stab(

(
0
0

)
) = SL2(Q).
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III: Known results
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Known results: n ≥ 4, n = 3

Recall that we want to study the question:

Question

Let n ≥ 2. Assume G y X is a faithful and n-transitive action and H is
the stabilizer subgroup of any point x ∈ X, can we describe all
intermediate von Neumann algebras between L(H) and L(G )?

Theorem (J., 2019)

If n ≥ 4, then L(H) is a maximal von Neumann subalgebra in L(G ), i.e. if
L(H) ⊆ P ⊆ L(G ), then P = L(H) or L(G ).

Proposition (J., 2019)

Consider the sharply 3-transitive action:

G := PSL2(Q) y X := P1(Q), x = [
(
1
0

)
] ∈ X .

Then L(H) is maximal in L(G ). Note that H =

(
∗ ∗
0 ∗

)
⊆ G.
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Corollary

Corollary (J.-Skalski 2019, J. 2019)

Ge’s question mentioned before has affirmative answers.

More precisely, we have:

(1) The hyperfinite subfactor L(

(
∗ ∗
0 ∗

)
) is maximal in the

non-hyperfinite factor L(PSL2(Q)).
[PSL2(Q) y P1(Q)]

(2) L(Fix({1})) is maximal in L(S∞) with finite Jones index.
[S∞ y N]

(3) LF∞ can be embedded into L(F2) as a maximal subfactor.
[F2 y X ]

N.B. It is still open whether the hyperfinite II1 factor R can be embedded
into L(F2) as a maximal subfactor.
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Known results: n = 3

Another partial answer:

Theorem (Zhou, 2020)

If n = 3 and further assume G y X is sharply 3-transitive or sHs−1 ∩ H is
I.C.C. for all s ∈ G, then L(H) is maximal in L(G ).

Examples of transitive actions such that sHs−1 ∩ H is I.C.C.:

(1) the affine action Ao G y A, where A = ⊕ZZ/2Z and G = Autf (A).

(2) Let G y S1 be a minimal, proximal, and not topologically free action.
Then consider G y X = G · p for any p ∈ S1.

Here, for a minimal action G y S1, it is called proximal if for all open
intervals I , J ( S1, J 6= ∅, there exists g ∈ G such that g(I ) ⊆ J.

[Le Boudec A, Matte Bon N., 19] proved for the above G , every
faithful, 3-transitive action of G on a set Ω, there exists a G -orbit
O ⊆ S1 such that the action of G on Ω is conjugate to the action on
O.
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Known results: n = 2

Building on the known works (due to Park ’92, Witte ’94) on classification

of all quotient actions of SL2(Z) y Ẑ2, we prove

Theorem (J., 2019)

Let SL2(k) y Y be the quotient action of SL2(k) y k̂2 defined by
modding out the relation φ ∼ φ′, where φ′(x , y) := φ(−x ,−y) for all
(x , y) ∈ k2. If L(SL2(k)) ( P ( L∞(Y ) o SL2(k), then

P =


q[L(SL2(k))]⊕ (1− q)[L∞(Y ) o SL2(k)], if k = Q

q[(L∞(Y ) ∩ L∞(m̂1Z2)) o SL2(k)]⊕
(1− q)[(L∞(Y ) ∩ L∞(m̂2Z2)) o SL2(k)], if k = Z

where q ∈ {uid+u−id

2 ,
uid−u−id

2 } is a central projection in L∞(Y ) o SL2(k).

Remark: this theorem basically says up to the central elements q and
1− q, every intermediate vN alg comes from a quotient action.
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Corollary

Using the previous result and other works (due to Jones and Xu ’04, Ioana
’10), we could show

Corollary (J., 2019)

L(SL2(k)) is a maximal Haagerup von Neumann subalgebra in
L(k2 o SL2(k)) for k = Q,Z.

N.B. It is open whether L(

∗ ∗ ∗0 ∗ ∗
0 0 ∗

) is maximal Haagerup in

L(SL3(Z)).
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IV: Proofs and remaining questions
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A general strategy for the proof

To determine P such that L(H) ⊆ P ⊆ L(G ), it suffices to determine
{E (ug ) : g ∈ G}, where E : L(G )→ P is the C.E.

(Idea) Treat it as a set of unknowns, find sufficiently many equations, e.g.

(1) φ(E (ug )) = E (φ(ug )), ∀φ ∈ Aut(L(G ),P), e.g. φ = Ad(uh), ∀h ∈ H;

(2) E (E (us)ut) = E (us)E (ut), ∀s, t ∈ G .

Set φ = Ad(ugsg−1), ∀s ∈ g−1Hg ∩ H in (1), check (1) becomes

u∗gE (ug ) ∈ L(g−1Hg ∩ H)′ ∩ L(G ).

Remark: (1) has been used in many works; (2) has not attracted enough

attention.
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Setting 1

Setting 1: Let G y X be a 4 or 3-transitive action.

Goal: show 4-transitivity or certain 3-transitivity implies L(H) is maximal
in L(G ).

Observation:

Assume H is maximal in G , then L(H) is maximal in L(G ) iff
u∗gE (ug ) ∈ C for all g ∈ G .

Proof.

“⇐ ”: Let K = {g ∈ G : E (ug ) 6= 0}. Show P = L(K ) and H < K .

∀g∈G\HE (ug ) = 0 (resp. ∀g∈G\HE (ug ) = ug ) ⇒ P = L(H) (resp.
P = L(G )).

Recall
u∗gE (ug ) ∈ L(g−1Hg ∩ H)′ ∩ L(G ).

(Key pt) 4-transitivity (resp. 3-transitivity) implies L(g−1Hg ∩ H)′ ∩ L(G )
is small. Then apply (2) (in last slide) to suitable s, t to determine E (ug ).
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From 3(or 4)-transitivity to small relative commutant

Q: Why 3 (or 4)-transitivity implies L(g−1Hg ∩ H)′ ∩ L(G ) is small?

(Exc) Let K < G be groups and x ∈ L(K )′ ∩ L(G ). Then
]{ktk−1 : k ∈ K} =∞ implies t 6∈ supp(x).

Proof.

Let x =
∑

t∈G λtt ∈ L(K )′ ∩ L(G ). Thus, λt = λktk−1 , ∀ k ∈ K , t ∈ G .
Fix any e 6= t. Let C := {ktk−1 : k ∈ K}. Note that

∞ >
∑
s∈G
|λs |2 ≥

∑
c∈C
|λc |2 =

∑
c∈C
|λt |2 = |λt |2]C ,

we deduce λt = 0 if ]C =∞.

Thus L(K )′ ∩ L(G ) is small if we can find sufficiently many t whose
K -conjugacy orbit has infinite size.

Let K = g−1Hg ∩ H = Stab(x) ∩ Stab(g−1x).

(Key pt) 3(or 4)-transitivity tells us we have freedom to construct many k.
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Setting 2

Setting 2: the affine 2-transitive action G := Q2 o SL2(Q) y X := Q2.

Let e1 =
(
1
0

)
∈ Q2, e2 =

(
0
1

)
and H := Stab(

−→
0 ) = SL2(Q). Let

L(SL2(Q)) ⊆ P ⊆ L(Q2 o SL2(Q)).
Then cv := u∗vE (uv ) ∈ L(v−1Hv ∩ H)′ ∩ L(G ), ∀ v ∈ Q2; moreover, for
v = e1, ce1 ∈ L(

(Q
0

)
o±

(
1 Q
0 1

))
).

We may write

ce1 =
∑
x ,y∈Q

λx ,y
(
x
0

)(
1 y
0 1

)
+
∑
x ,y∈Q

µx ,y
(
x
0

)(−1 y
0 −1

)
.

From cg .v = σg (cv ), we deduce that

ce2 =
∑
x ,y∈Q

λx ,y
(
0
x

)(
1 0
−y 1

)
+
∑
x ,y∈Q

µx ,y
(
0
x

)( −1 0
−y −1

)
.

The goal is to solve for {E (uv ) : v ∈ Q2}; equivalently, solve for
{cv : v ∈ Q2}, which boils down to solving for λx ,y and µx ,y for all x , y .
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Continue...

Recall that L(SL2(Q)) ⊆ P ⊆ L(Q2 o SL2(Q)) and we have

E (ue1) = ue1ce1 =
∑
x ,y∈Q

λx ,y
(
x+1
0

)(
1 y
0 1

)
+
∑
x ,y∈Q

µx ,y
(
x+1
0

)(−1 y
0 −1

)
,

E (ue2) = ue2ce2 =
∑
x ,y∈Q

λx ,y
(

0
x+1

)(
1 0
−y 1

)
+
∑
x ,y∈Q

µx ,y
(

0
x+1

)( −1 0
−y −1

)
.

We apply E (E (ue1)ue2) = E (ue1)E (ue2).

(Key pt) we may find Fourier expansion for both sides to get various
equations on the unknowns λx ,y , µx ,y .

For technical reasons, we assume P ⊆ L∞(Y ) o SL2(Q) to get direct
relations between λx ,y and µx ,y , which help solving for the unknowns.

The case of Z-coefficient follows a similar strategy.
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Open questions

Question

(1) Is AoQ× the only (non-trivial) intermediate vN alg between L(Q×)
and L(QoQ×), where
A := {

∑
s∈Q λsus : λs = λ−s ∀ s ∈ Q} ∩ L(Q)?

(2) If H is a maximal subgroup in G and [G : H] =∞, is L(H) rigid in
L(G ), i.e. ∀φ ∈ Aut(L(G )), φ|L(H) = id ⇒ φ = id?

RK: (1) The affine action QoQ× y Q is sharply 2-transitive, so
u∗gE (ug ) ∈ L(g−1Hg ∩ H)′ ∩ L(G ) is no longer helpful as
g−1Hg ∩ H = {e}.

(2) has positive answers in all known examples and surprisingly, L(H) is
also maximal in L(G ) for these examples.

28 / 29



Thank you for your attention!
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