

Guoxing Ji

Contents

Section 1

Section 3

Section 3

Section 4

On some partial orders on $\mathcal{B}(\mathcal{H})$

Guoxing Ji

School of Mathematics and Information Science Shaanxi Normal University Xi'an, China gxji@snnu.edu.cn

(日) (日) (日) (日) (日) (日) (日)

Contents

1 Partial orders on $\mathcal{B}(\mathcal{H})$

2 Partial order hereditary subspaces

3 Order automorphisms on the unit interval

Maximal lower bounds and minimal upper bounds

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Example 1.1

Let \mathbb{C}^n be the *n* dimensional complex (Hilbert) Euclid space and let M_n be the algebra of all complex $n \times n$ matrices. Let M_i (resp. N_i) be the m_i (resp. n_i) dimensional subspace of \mathbb{C}^n for i = 1, 2 such that $n = m_1 + m_2 = n_1 + n_2$ and

$$\mathbb{C}^n = M_1 \oplus M_2 = N_1 \oplus N_2. \tag{1}$$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Example 1.1

Let \mathbb{C}^n be the *n* dimensional complex (Hilbert) Euclid space and let M_n be the algebra of all complex $n \times n$ matrices. Let M_i (resp. N_i) be the m_i (resp. n_i) dimensional subspace of \mathbb{C}^n for i = 1, 2 such that $n = m_1 + m_2 = n_1 + n_2$ and

$$\mathbb{C}^n = M_1 \oplus M_2 = N_1 \oplus N_2. \tag{1}$$

Let $A, B \in M_n$. If there are $n_i \times m_i$ matrices $B_i(i = 1, 2)$ such that

$$A = \left(\begin{array}{cc} B_1 & 0\\ 0 & 0 \end{array}\right), B = \left(\begin{array}{cc} B_1 & 0\\ 0 & B_2 \end{array}\right)$$

with respect to the decomposition (1), then we say that $A \leq B$.

1. Partial orders on $\mathcal{B}(\mathcal{H})$

partial orders on $\mathcal{B}(\mathcal{H})$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

It is known that " \leq " is a partial order in M_n .

Ξ.

1. Partial orders on $\mathcal{B}(\mathcal{H})$

On some partial orders on $\mathcal{B}(\mathcal{H})$

Guoxing Ji

 $\operatorname{Contents}$

Section 1

Section 2

Section 3

Section 4

It is known that " \leq " is a partial order in M_n . In fact, $A \leq B \iff A^*A = A^*B$, $AA^* = BA^*$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Guoxing Ji

Contents

Section 3

Section 1

Section 3

Section 4

It is known that " \leq " is a partial order in M_n . In fact, $A \leq B \iff A^*A = A^*B$, $AA^* = BA^*$. We now may consider this partial order in the algebra $\mathcal{B}(\mathcal{H})$ (or a von Neumann algebra $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$) of all bounded linear operators on a complex Hilbert space \mathcal{H} .

(日) (日) (日) (日) (日) (日) (日)

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

It is known that " \leq " is a partial order in M_n . In fact, $A \leq B \iff A^*A = A^*B$, $AA^* = BA^*$. We now may consider this partial order in the algebra $\mathcal{B}(\mathcal{H})$ (or a von Neumann algebra $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$) of all bounded linear operators on a complex Hilbert space \mathcal{H} .

Definition 1.2

Let $A, B \in \mathcal{M}$. If $A^*A = A^*B$, $AA^* = BA^*$, then we say that $A \leq B$.

(日) (日) (日) (日) (日) (日) (日)

The order $\stackrel{*}{\leq}$ is called the star partial order in \mathcal{M} .

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

1. Partial orders on $\mathcal{B}(\mathcal{H})$

7

Let M_i and $N_i(i = 1, 2)$ be closed subspaces of \mathcal{H} such that

$$\mathcal{H} = M_1 \oplus M_2 = N_1 \oplus N_2. \tag{2}$$

For any $T \in \mathcal{B}(\mathcal{H})$, there are $T_{ji} \in \mathcal{B}(M_i, N_j)(i, j = 1, 2)$ such that

$$T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$$
(3)

Sac

with respect to the orthogonal decompositions (2).

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

1. Partial orders on $\mathcal{B}(\mathcal{H})$

7

Let M_i and $N_i(i = 1, 2)$ be closed subspaces of \mathcal{H} such that

$$\mathcal{H} = M_1 \oplus M_2 = N_1 \oplus N_2. \tag{2}$$

For any $T \in \mathcal{B}(\mathcal{H})$, there are $T_{ji} \in \mathcal{B}(M_i, N_j)(i, j = 1, 2)$ such that

$$T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$$
(3)

with respect to the orthogonal decompositions (2).

Proposition 1.3

Let $A, B \in \mathcal{B}(\mathcal{H})$. Then $A \stackrel{*}{\leq} B$ if and only if there is a orthogonal direct decomposition (2) of \mathcal{H} such that

$$A = \begin{pmatrix} A_{11} & 0 \\ 0 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} A_{11} & 0 \\ 0 & B_{22} \end{pmatrix}.$$
(4)

1. Partial orders on $\mathcal{B}(\mathcal{H})$

partial orders on $\mathcal{B}(\mathcal{H})$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

We next recall another partial order on $\mathcal{B}(\mathcal{H})$.

æ.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

We next recall another partial order on $\mathcal{B}(\mathcal{H})$. Let $A \in \mathcal{B}(\mathcal{H})$. Denote by R(A) and N(A) the range and the kernel of A respectively.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

We next recall another partial order on $\mathcal{B}(\mathcal{H})$. Let $A \in \mathcal{B}(\mathcal{H})$. Denote by R(A) and N(A) the range and the kernel of A respectively. For a closed subspace $M \subseteq \mathcal{H}, P_M$ is the orthogonal projection on M.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

We next recall another partial order on $\mathcal{B}(\mathcal{H})$. Let $A \in \mathcal{B}(\mathcal{H})$. Denote by R(A) and N(A) the range and the kernel of A respectively. For a closed subspace $M \subseteq \mathcal{H}, P_M$ is the orthogonal projection on M.

Definition 1.4 (J. K. Baksalary, J. Hauke, 1990)

 $\begin{array}{l} \text{For } A, \ B \in \mathcal{B}(\mathcal{H}), \text{we say } A \leq^{\diamond} B \text{ if } \overline{R(A)} \subseteq \overline{R(B)}, \overline{R(A^*)} \subseteq \\ \overline{R(B^*)} \text{ and } AA^*A = AB^*A. \end{array}$

It is known that \leq^{\diamond} is a partial order on $\mathcal{B}(\mathcal{H})$ and is called the diamond partial order.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Proposition 1.5

Let $A, B \in \mathcal{B}(\mathcal{H})$ and $U \in \mathcal{B}(\mathcal{H})$ is unitary. • If $A \stackrel{*}{\leq} B(\text{resp. } A \stackrel{\leq \diamond}{\leq} B)$, then $UA \stackrel{*}{\leq} UB(\text{resp. } UA \stackrel{\leq \diamond}{\leq} UB)$ and $AU \stackrel{\leq}{\leq} BU(\text{resp. } AU \stackrel{\leq \diamond}{\leq} BU)$. • $A \stackrel{*}{\leq} B \iff A = P_{\overline{R(A)}}B = BP_{\overline{R(A^*)}}$. • $A \stackrel{\leq \diamond}{\leq} B \iff A = P_{\overline{R(A)}}BP_{\overline{R(A^*)}} = P_{\overline{R(B)}}AP_{\overline{R(B^*)}}$. • If $A \stackrel{*}{\leq} B$, then $A \stackrel{\leq \diamond}{\leq} B$.

(日) (日) (日) (日) (日) (日) (日)

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Definition 2.1

Let " \leq " be a partial order on a von Neumann algebra \mathcal{M} and $\mathfrak{A} \subseteq \mathcal{M}$ a subspace. For any $A \in \mathcal{M}$ and $B \in \mathfrak{A}$, if $A \in \mathfrak{A}$ whenever $A \leq B$, then we say that \mathfrak{A} is a hereditary subspace with respect to the partial order " \leq ".

Sac

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Definition 2.1

Let " \leq " be a partial order on a von Neumann algebra \mathcal{M} and $\mathfrak{A} \subseteq \mathcal{M}$ a subspace. For any $A \in \mathcal{M}$ and $B \in \mathfrak{A}$, if $A \in \mathfrak{A}$ whenever $A \leq B$, then we say that \mathfrak{A} is a hereditary subspace with respect to the partial order " \leq ". If \mathfrak{A} is a hereditary subspace with respect to the star(resp. diamond) partial order, then we say that \mathfrak{A} is a star(resp. diamond) partial order hereditary subspace of \mathcal{M} .

(日) (日) (日) (日) (日) (日) (日)

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Remark

- \mathfrak{A} : star(resp. diamond) partial order hereditary \Longrightarrow $\mathfrak{A}^* = \{X^* : X \in \mathfrak{A}\}$ is.
- **2** \mathfrak{A} : diamond partial order hereditary $\Longrightarrow \mathfrak{A}$: star partial order hereditary.
- **③** $I \subseteq \mathcal{M}$: left(resp. right) ideal ⇒ I: diamond(star) partial order hereditary.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Remark

- \mathfrak{A} : star(resp. diamond) partial order hereditary \Longrightarrow $\mathfrak{A}^* = \{X^* : X \in \mathfrak{A}\}$ is.
- **2** \mathfrak{A} : diamond partial order hereditary $\Longrightarrow \mathfrak{A}$: star partial order hereditary.
- **③** $I \subseteq \mathcal{M}$: left(resp. right) ideal ⇒ I: diamond(star) partial order hereditary.

We recall that if I is a weak^{*} closed left, right or twosided ideal in \mathcal{M} respectively, then there are projections $E, F \in \mathcal{M}$ or a central projection $P \in Z(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}'$ such that $I = \mathcal{M}E, I = F\mathcal{M}$ or $I = P\mathcal{M}$.

Section 2

Remark

- \mathfrak{A} : star(resp. diamond) partial order hereditary \Longrightarrow $\mathfrak{A}^* = \{X^* : X \in \mathfrak{A}\}$ is.
- **2** \mathfrak{A} : diamond partial order hereditary $\Longrightarrow \mathfrak{A}$: star partial order hereditary.
- $I \subseteq \mathcal{M}$: left(resp. right) ideal $\Longrightarrow I$: diamond(star) partial order hereditary.

We recall that if I is a weak^{*} closed left, right or twosided ideal in \mathcal{M} respectively, then there are projections $E, F \in \mathcal{M}$ or a central projection $P \in Z(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}'$ such that $I = \mathcal{M}E$, $I = F\mathcal{M}$ or $I = P\mathcal{M}$.

In general, let $E, F \in \mathcal{M}$ be two projections. Then $E\mathcal{M}F$ is weak^{*} closed diamond as well as star partial orderhereditary.

On some partial orders on $\mathcal{B}(\mathcal{H})$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

What is a diamond or star partial order hereditary sub-space?

★□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

2. Partial order-hereditary subspaces

What is a diamond or star partial order hereditary subspace?

We next consider star partial order hereditary subspaces. Let $\mathcal{K}(\mathcal{H})$ be the ideal of all compact operators in $\mathcal{B}(\mathcal{H})$.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

What is a diamond or star partial order hereditary subspace?

We next consider star partial order hereditary subspaces. Let $\mathcal{K}(\mathcal{H})$ be the ideal of all compact operators in $\mathcal{B}(\mathcal{H})$.

Theorem 2.2

Let \mathfrak{A} be a nonzero norm closed star partial order hereditary subspace in $\mathcal{B}(\mathcal{H})$. Then there exists a unique pair of projections $E, F \in \mathcal{B}(\mathcal{H})$ such that

 $\mathfrak{A} \cap \mathcal{K}(\mathcal{H}) = E\mathcal{K}(\mathcal{H})F$ and $\overline{\mathfrak{A}}^{w^*} = E\mathcal{B}(\mathcal{H})F$,

where $\overline{\mathfrak{A}}^{w^*}$ is the weak^{*} closure of \mathfrak{A} . That is,

 $E\mathcal{K}(\mathcal{H})F \subseteq \mathfrak{A} \subseteq E\mathcal{B}(\mathcal{H})F.$

partial orders on $\mathcal{B}(\mathcal{H})$

Guoxing Ji

 $\operatorname{Contents}$

Section 1

Section 2

Section 3

Section 4

Example 2.3

Let \mathcal{N} be an infinite dimensional Hilbert space and $\mathcal{H} = \mathcal{N} \oplus \mathcal{N}$. Put

$$\mathfrak{A} = \left\{ \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} : X_{11}, X_{12} \in \mathcal{B}(\mathcal{N}), X_{21}, X_{22} \in \mathcal{K}(\mathcal{N}) \right\}$$

Then \mathfrak{A} is a norm closed star partial order hereditary subspace such that $\mathcal{K}(\mathcal{H}) \subsetneqq \mathfrak{A} \subsetneqq \mathcal{B}(\mathcal{H})$.

(日) (日) (日) (日) (日) (日) (日)

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Example 2.3

Let \mathcal{N} be an infinite dimensional Hilbert space and $\mathcal{H} = \mathcal{N} \oplus \mathcal{N}$. Put

$$\mathfrak{A} = \left\{ \left(\begin{array}{cc} X_{11} & X_{12} \\ X_{21} & X_{22} \end{array} \right) : X_{11}, X_{12} \in \mathcal{B}(\mathcal{N}), X_{21}, X_{22} \in \mathcal{K}(\mathcal{N}) \right\}$$

Then \mathfrak{A} is a norm closed star partial order hereditary subspace such that $\mathcal{K}(\mathcal{H}) \subsetneqq \mathfrak{A} \subsetneqq \mathcal{B}(\mathcal{H})$.

It is also known that both \mathfrak{A}^* and $\mathfrak{A} \cap \mathfrak{A}^*$ are also star partial order hereditary subspaces containing $\mathcal{K}(\mathcal{H})$. However $\mathfrak{A} \bigvee \mathfrak{A}^*$ is not star partial order hereditary.

On some partial orders on $\mathcal{B}(\mathcal{H})$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Let \mathcal{M} be a von Neumann algebra and $Z(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}'$ the center of \mathcal{M} . Let $A \in \mathcal{M}$.

 $C_A = \inf\{E \in Z(\mathcal{M}) : E \text{ is a projection such that } EA = A\}$

denotes the central carrier of A.

On some partial orders on $\mathcal{B}(\mathcal{H})$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Let \mathcal{M} be a von Neumann algebra and $Z(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}'$ the center of \mathcal{M} . Let $A \in \mathcal{M}$.

 $C_A = \inf\{E \in Z(\mathcal{M}) : E \text{ is a projection such that } EA = A\}$

denotes the central carrier of A. We know that C_A in fact is the projection from \mathcal{H} onto $[\mathcal{M}A(\mathcal{H})]$.

On some partial orders on $\mathcal{B}(\mathcal{H})$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Let \mathcal{M} be a von Neumann algebra and $Z(\mathcal{M}) = \mathcal{M} \cap \mathcal{M}'$ the center of \mathcal{M} . Let $A \in \mathcal{M}$.

 $C_A = inf\{E \in Z(\mathcal{M}) : E \text{ is a projection such that } EA = A\}$

denotes the central carrier of A. We know that C_A in fact is the projection from \mathcal{H} onto $[\mathcal{M}A(\mathcal{H})]$.

Theorem 2.4

Let $\mathfrak{A} \subseteq \mathcal{M}$ be a weak^{*} closed star partial order hereditary subspace. Then there exists a unique pair of projections $E, F \in \mathcal{M}$ with the same central carriers $C_E = C_F$ such that $\mathfrak{A} = E\mathcal{M}F$.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Corollary 2.5

Let $\mathfrak{A} \subseteq \mathcal{M}$ be a weak^{*} closed diamond partial order hereditary subspace. Then there exists a unique pair of projections $E, F \in \mathcal{M}$ with the same central carriers $C_E = C_F$ such that $\mathfrak{A} = E\mathcal{M}F$.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Corollary 2.5

Let $\mathfrak{A} \subseteq \mathcal{M}$ be a weak^{*} closed diamond partial order hereditary subspace. Then there exists a unique pair of projections $E, F \in \mathcal{M}$ with the same central carriers $C_E = C_F$ such that $\mathfrak{A} = E\mathcal{M}F$.

Remark

 $\mathfrak{A}\subseteq\mathcal{M}\colon$ norm closed star partial order hereditary subspace.

(日) (日) (日) (日) (日) (日) (日)

 $\implies \mathfrak{A}$: diamond partial order hereditary?

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Corollary 2.5

Let $\mathfrak{A} \subseteq \mathcal{M}$ be a weak^{*} closed diamond partial order hereditary subspace. Then there exists a unique pair of projections $E, F \in \mathcal{M}$ with the same central carriers $C_E = C_F$ such that $\mathfrak{A} = E\mathcal{M}F$.

Remark

 $\mathfrak{A} \subseteq \mathcal{M}$: norm closed star partial order hereditary subspace. $\Longrightarrow \mathfrak{A}$: diamond partial order hereditary?

If it is also weak^{*} closed, then it is.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

3. Order automorphisms on the unit interval

We consider the unit interval with respect to a partial order.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

3. Order automorphisms on the unit interval

We consider the unit interval with respect to a partial order.

Put $\Sigma = \{T \in \mathcal{B}(\mathcal{H}) : 0 \stackrel{*}{\leq} T \stackrel{*}{\leq} I\}$, the unit interval with respect to the star partial order. Then

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

3. Order automorphisms on the unit interval

We consider the unit interval with respect to a partial order.

Put $\Sigma = \{T \in \mathcal{B}(\mathcal{H}) : 0 \stackrel{*}{\leq} T \stackrel{*}{\leq} I\}$, the unit interval with respect to the star partial order. Then

 $\Sigma = \{ E \in \mathcal{B}(\mathcal{H}) : E \text{ is a projection} \}$

and for any $E, F \in \Sigma, E \stackrel{*}{\leq} F \iff E \leq F$.

In this case, Σ is just the lattice of subspaces in \mathcal{H} .

(日) (日) (日) (日) (日) (日) (日)

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

We consider the unit interval with respect to a partial order.

Put $\Sigma = \{T \in \mathcal{B}(\mathcal{H}) : 0 \stackrel{*}{\leq} T \stackrel{*}{\leq} I\}$, the unit interval with respect to the star partial order. Then

 $\Sigma = \{ E \in \mathcal{B}(\mathcal{H}) : E \text{ is a projection} \}$

and for any $E, F \in \Sigma, E \stackrel{*}{\leq} F \iff E \leq F$.

In this case, Σ is just the lattice of subspaces in \mathcal{H} .

Theorem 3.1 (A basic theorem)

Assume dim $\mathcal{H} = n \geq 3$, that is, $\mathcal{H} = \mathbb{C}^n$. Let φ be a lattice automorphism on Σ . Then there are a ring automorphism τ on \mathbb{C} and a τ linear bijection $S(S(ax+by) = \tau(a)x + \tau(b)y,$ $\forall a, b \in \mathbb{C}, x, y \in \mathbb{C}^n)$ on \mathbb{C}^n such that

 $\varphi(E) = P_{R(SES^{-1})} = P_{R(SE)}, \quad \forall E \in \Sigma.$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Theorem 3.2 (Fillmore and Longstaff)

Assume dim $\mathcal{H} = \infty$. Let φ be a lattice automorphism on

 Σ . Then there is a bounded invertible linear or conjugate linear operator S on \mathcal{H} such that

$$\varphi(E) = P_{R(SES^{-1})} = P_{R(SE)}, \quad \forall E \in \Sigma.$$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Theorem 3.2 (Fillmore and Longstaff)

Assume dim $\mathcal{H} = \infty$. Let φ be a lattice automorphism on

 $\Sigma.$ Then there is a bounded invertible linear or conjugate linear operator S on ${\mathcal H}$ such that

$$\varphi(E) = P_{R(SES^{-1})} = P_{R(SE)}, \quad \forall E \in \Sigma.$$

Theorems 3.1 and 3.2 give a complete description of order automorphism on Σ .

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Put $\Lambda = \{T \in \mathcal{B}(\mathcal{H}) : 0 \leq^{\diamond} T \leq^{\diamond} I\}$. Then Λ is a poset but not a lattice.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Put $\Lambda = \{T \in \mathcal{B}(\mathcal{H}) : 0 \leq^{\diamond} T \leq^{\diamond} I\}$. Then Λ is a poset but not a lattice.

Theorem 3.3

 $\Lambda = \{ EF : E, F \in \Sigma \}.$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Put $\Lambda = \{T \in \mathcal{B}(\mathcal{H}) : 0 \leq^{\diamond} T \leq^{\diamond} I\}$. Then Λ is a poset but not a lattice.

Theorem 3.3

 $\Lambda = \{ EF : E, F \in \Sigma \}.$

Let $T \in \Lambda$. Then

$$T = P_{\overline{R(T)}} P_{N(T)^{\perp}} = P_{\overline{R(T)}} P_{\overline{R(T^*)}} = P_{N(T^*)^{\perp}} P_{N(T)^{\perp}}.$$

This factorization is called the canonical factorization of T.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

 $\varphi:\Lambda\longrightarrow\Lambda:$ diamond order automorphism. $\varphi=?$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

 $\varphi : \Lambda \longrightarrow \Lambda$: diamond order automorphism. $\varphi =$? Let Δ be the set of all semi-linear bijections on \mathcal{H} if the dimension of \mathcal{H} is finite, and let Δ be the set of all bounded invertible linear or conjugate linear operators on \mathcal{H} if the dimension of \mathcal{H} is infinite.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

 $\varphi : \Lambda \longrightarrow \Lambda$: diamond order automorphism. $\varphi =$? Let Δ be the set of all semi-linear bijections on \mathcal{H} if the dimension of \mathcal{H} is finite, and let Δ be the set of all bounded invertible linear or conjugate linear operators on \mathcal{H} if the dimension of \mathcal{H} is infinite.

For $A \in \Delta$, we define $\delta_A(T) = ATA^{-1}, \forall T \in \mathcal{B}(\mathcal{H})$. We now define two canonical maps on Λ .

$$\begin{split} \varphi_A^1(T) &= P_{\overline{R(\delta_A(T))}} P_{\overline{R(\delta_A(T)^*)}}, \quad \forall T \in \Lambda; \\ \varphi_A^2(T) &= P_{\overline{R(\delta_A(T^*))}} P_{\overline{R(\delta_A(T^*))^*)}}, \; \forall T \in \Lambda. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Proposition 3.4

Let $A \in \Delta$. Then φ_A^1 and φ_A^2 defined as above are automorphisms of the poset $(\Lambda, \leq^{\diamond})$.

Sac

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Proposition 3.4

Let $A \in \Delta$. Then φ_A^1 and φ_A^2 defined as above are automorphisms of the poset $(\Lambda, \leq^{\diamond})$.

Theorem 3.5

Let $\varphi : \Lambda \longrightarrow \Lambda$ be a map. Then φ is an automorphism of the poset $(\Lambda, \leq^{\diamond})$ if and only if there is some $A \in \Delta$ such that either $\varphi = \varphi_A^1$ or $\varphi = \varphi_A^2$.

(日) (日) (日) (日) (日) (日) (日)

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Remark

Let $\varphi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{H})$: star(diamond) partial order automorphism. $\varphi = ?$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Remark

Let $\varphi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{H})$: star(diamond) partial order automorphism. $\varphi = ?$

Theorem 3.6

Let $\varphi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{H})$: star partial order automorphism. If φ is additive, then there are a nonzero constant $\alpha \in \mathbb{C}$ and both unitary operators $U, V \in \mathcal{B}(\mathcal{H})$ or both anti-unitary operators U and V on \mathcal{H} such that $\varphi(A) = \alpha UAV, \forall A \in$ $\mathcal{B}(\mathcal{H})$ or $\varphi(A) = \alpha UA^*V, \forall A \in \mathcal{B}(\mathcal{H}).$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Remark

Let $\varphi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{H})$: star(diamond) partial order automorphism. $\varphi = ?$

Theorem 3.6

Let $\varphi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{H})$: star partial order automorphism. If φ is additive, then there are a nonzero constant $\alpha \in \mathbb{C}$ and both unitary operators $U, V \in \mathcal{B}(\mathcal{H})$ or both anti-unitary operators U and V on \mathcal{H} such that $\varphi(A) = \alpha UAV, \forall A \in$ $\mathcal{B}(\mathcal{H})$ or $\varphi(A) = \alpha UA^*V, \forall A \in \mathcal{B}(\mathcal{H}).$

(日) (日) (日) (日) (日) (日) (日)

In general, unknown.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Definition 4.1

Let \leq be a partial order on a von Neumann algebra \mathcal{M} and let $\mathcal{S} \subseteq \mathcal{M}$ be a subset.

• If there is a $C \in \mathcal{M}$ such that $S \leq C, \forall S \in \mathcal{S}$, then we say that C is an upper bound of \mathcal{S} .

Guoxing Ji

- Contents
- Section 1
- Section 2
- Section 3
- Section 4

Definition 4.1

Let \leq be a partial order on a von Neumann algebra \mathcal{M} and let $\mathcal{S} \subseteq \mathcal{M}$ be a subset.

- If there is a $C \in \mathcal{M}$ such that $S \leq C, \forall S \in \mathcal{S}$, then we say that C is an upper bound of \mathcal{S} .
- Let C be an upper bound of S. If there are not any upper bound D of S such that $D \leq C$, then we say that C is a minimal upper bound of S. If for any upper bound D of S, $C \leq D$, then we say that C is the supremum of S and denoted by $\bigvee_{\mathcal{M}} S$.

Guoxing Ji

- Contents
- Section 1
- Section 2
- Section 3
- Section 4

Definition 4.1

Let \leq be a partial order on a von Neumann algebra \mathcal{M} and let $\mathcal{S} \subseteq \mathcal{M}$ be a subset.

- If there is a $C \in \mathcal{M}$ such that $S \leq C, \forall S \in \mathcal{S}$, then we say that C is an upper bound of \mathcal{S} .
- Let C be an upper bound of S. If there are not any upper bound D of S such that $D \leq C$, then we say that C is a minimal upper bound of S. If for any upper bound D of S, $C \leq D$, then we say that C is the supremum of S and denoted by $\bigvee_{\mathcal{M}} S$.
- If *M* = *B*(*H*), then we abbreviate as ∨ *S* if there exists the supremum.

Guoxing Ji

- Contents
- Section 1
- Section 2
- Section 3
- Section 4

Definition 4.1

Let \leq be a partial order on a von Neumann algebra \mathcal{M} and let $\mathcal{S} \subseteq \mathcal{M}$ be a subset.

- If there is a $C \in \mathcal{M}$ such that $S \leq C, \forall S \in \mathcal{S}$, then we say that C is an upper bound of \mathcal{S} .
- Let C be an upper bound of S. If there are not any upper bound D of S such that $D \leq C$, then we say that C is a minimal upper bound of S. If for any upper bound D of S, $C \leq D$, then we say that C is the supremum of S and denoted by $\bigvee_{\mathcal{M}} S$.
- If *M* = *B*(*H*), then we abbreviate as ∨ *S* if there exists the supremum.

We similarly may define maximal lower bounds and the infimum of S and denoted by $\bigwedge_{\mathcal{M}_{\square}} \mathcal{S}(\bigwedge_{\mathcal{M}_{\square}} \mathcal{S})$ the infimum of

Guoxing Ji

 $\operatorname{Contents}$

Section 1

Section 2

Section 3

Section 4

4. Maximal lower bounds and minimal upper bounds

We firstly consider the star partial order.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Guoxing Ji

Contents

Section

Section 2

Section 3

Section 4

We firstly consider the star partial order.

Lemma 4.2

Let $\mathcal{H} = H_1 \oplus H_2$ and $A, B \in \mathcal{B}(\mathcal{H})$ such that

$$A = \left(\begin{array}{cc} A_{11} & 0\\ 0 & A_{22} \end{array}\right), \quad B = \left(\begin{array}{cc} B_{11} & 0\\ 0 & B_{22} \end{array}\right)$$

Then

•
$$A \stackrel{*}{\wedge} B = \begin{pmatrix} A_{11} \stackrel{*}{\wedge} B_{11} & 0 \\ 0 & A_{22} \stackrel{*}{\wedge} B_{22} \end{pmatrix}.$$

If there is a upper bound for A and B, then $A \stackrel{*}{\lor} B = \begin{pmatrix} A_{11} \stackrel{*}{\lor} B_{11} & 0 \\ 0 & A_{22} \stackrel{*}{\lor} B_{22} \end{pmatrix}$.

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注 のへぐ

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Theorem 4.3

Let $\mathcal{S} \subseteq \mathcal{M}$ be a subset of \mathcal{M} .

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Theorem 4.3

Let $\mathcal{S} \subseteq \mathcal{M}$ be a subset of \mathcal{M} .

$$\overset{*}{\wedge}_{\mathcal{M}}\mathcal{S} = \overset{*}{\wedge}\mathcal{S}.$$

2 If there is an supper bound for \mathcal{S} , then $\overset{*}{\lor}_{\mathcal{M}} \mathcal{S} = \overset{*}{\lor} \mathcal{S}$.

Sac

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Theorem 4.3

Let $\mathcal{S} \subseteq \mathcal{M}$ be a subset of \mathcal{M} .

$$\overset{*}{\wedge}_{\mathcal{M}}\mathcal{S} = \overset{*}{\wedge}\mathcal{S}.$$

2 If there is an supper bound for \mathcal{S} , then $\overset{*}{\lor}_{\mathcal{M}} \mathcal{S} = \overset{*}{\lor} \mathcal{S}$.

Sac

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

4. Maximal lower bounds and minimal upper bounds

However, there are no supremum and infimum for a bounded subset in $\mathcal{B}(\mathcal{H})$ with respect to the diamond partial order in general.

Are there maximal lower bounds and minimal upper bounds for a bounded subset?

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

4. Maximal lower bounds and minimal upper bounds

However, there are no supremum and infimum for a bounded subset in $\mathcal{B}(\mathcal{H})$ with respect to the diamond partial order in general.

Are there maximal lower bounds and minimal upper bounds for a bounded subset?

Theorem 4.4

Let $S \subseteq \mathcal{B}(\mathcal{H})$. If S is bounded with respect to the diamond partial order, then there exists a minimal upper bound for S.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

However, there are no supremum and infimum for a bounded subset in $\mathcal{B}(\mathcal{H})$ with respect to the diamond partial order in general.

Are there maximal lower bounds and minimal upper bounds for a bounded subset?

Theorem 4.4

Let $S \subseteq \mathcal{B}(\mathcal{H})$. If S is bounded with respect to the diamond partial order, then there exists a minimal upper bound for S.

Let *B* be an upper bound of *S*. Put $P = P_{\bigvee\{P_{\overline{R(S)}}:S\in\mathcal{S}\}}$, $Q = P_{\bigvee\{P_{\overline{R(S^*)}}:S\in\mathcal{S}\}}$ and A = PBQ. Moreover, put $H_1 = \overline{R(A)}$, $H_2 = P(\mathcal{H}) \ominus H_1$ and $H_3 = \mathcal{H} \ominus P(\mathcal{H})$. $K_1 = P_{\overline{R(A^*)}}$, $K_2 = \mathcal{H} \ominus Q(\mathcal{H})$ and $K_3 = Q(\mathcal{H}) \ominus K_1$. Then

$$\mathcal{H} = K_1 \oplus K_2 \oplus K_3 = H_1 \oplus H_2 \oplus H_3. \tag{5}$$

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Theorem 4.5

Let $T \in \mathcal{B}(K_2, H_2)$ and $S \in \mathcal{B}(K_3, H_3)$ such that both T and S^* with dense ranges. Then

$$B_{T,S} = \left(\begin{array}{ccc} A & 0 & 0 \\ 0 & T & 0 \\ 0 & 0 & S \end{array} \right)$$

with respect to decomposition (5) of \mathcal{H} is an upper bound of \mathcal{S} . $B_{T,S}$ is a minimal upper bound if and only if both Tand S^* are surjective.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Proposition 4.6

Let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be an increasing net in $\mathcal{B}(\mathcal{H})$ and bounded from above with respect to the diamond partial order. Then

- $A_{\alpha} \longrightarrow A(SOT)$ for some $A \in \mathcal{B}(\mathcal{H})$ such that $A \leq D$ for any upper bound D of $\{A_{\alpha}\}_{\alpha \in \Lambda}$.
- A is the supremum of $\{A_{\alpha}\}_{\alpha \in \Lambda}$ if and only if $P_{A_{\alpha}} \to P_A(SOT)$ and $Q_{\alpha} \to Q_A(SOT)$.

(日) (日) (日) (日) (日) (日) (日)

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Example 4.7

Let $\mathcal{H} = L^2[(0,1]) \oplus L^2([0,1]) \oplus L^2([0,1])$.Put $\Delta_s = [0,s]$, $\Omega_s = (s,1]$ and $f_s(t) = \chi_{\Delta_s}(t) + \frac{1}{2}\chi_{\Omega_s}(t), \forall s \in [0,1)$. We define

$$P_{s} = \begin{pmatrix} f_{s} & \frac{1}{2}\chi_{\Omega_{s}} & 0\\ \frac{1}{2}\chi_{\Omega_{s}} & f_{s} & 0\\ 0 & 0 & 0 \end{pmatrix}, \ Q_{s} = \begin{pmatrix} f_{s} & 0 & \frac{1}{2}\chi_{\Omega_{s}}\\ 0 & 0 & 0\\ \frac{1}{2}\chi_{\Omega_{s}} & 0 & f_{s} \end{pmatrix}.$$

Then P_s and Q_s are projections and $A_s = P_sQ_s$ is increasing and with an upper bound I. Note that $P = P_{\bigvee\{R(P_sQ_s):0\leq s<1\}} = I \oplus I \oplus 0$ and $Q = P_{\bigvee\{R(Q_sP_s):0\leq s<1\}} = I \oplus 0 \oplus I$. However, $A_s = P_sQ_s \to PQ = A = I \oplus 0 \oplus 0(SOT)$ and A is not an upper bound of $\{A_s : 0 \leq s < 1\}$. By Theorem 2.6, there many minimal upper bounds for $\{A_s: 0 \leq s < 1\}$.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Are there maximal lower bounds for S?

Theorem 4.8

Let \mathcal{A} be a nonempty subset in $\mathcal{B}(\mathcal{H})$. If $B \in \mathcal{B}(\mathcal{H})$ is an upper bound of \mathcal{A} with respect to the diamond partial order, then EBF is a maximal lower bound of \mathcal{A} .

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Are there maximal lower bounds for S?

Theorem 4.8

Let \mathcal{A} be a nonempty subset in $\mathcal{B}(\mathcal{H})$. If $B \in \mathcal{B}(\mathcal{H})$ is an upper bound of \mathcal{A} with respect to the diamond partial order, then *EBF* is a maximal lower bound of \mathcal{A} .

Proposition 4.9

Let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a decreasing net in $\mathcal{B}(\mathcal{H})$ respect to the diamond partial order. Then $A_{\alpha} \longrightarrow A(SOT)$ and A is a maximal lower bound for $\{A_{\alpha}\}_{\alpha \in \Lambda}$. A is the infimum of $\{A_{\alpha}\}_{\alpha \in \Lambda}$ if and only if $P_{A_{\alpha}} \rightarrow P_A(SOT)$ and $Q_{\alpha} \rightarrow Q_A(SOT)$.

Guoxing Ji

Contents

Section 1

Section 2

Section 3

Section 4

Example 4.10

 \mathcal{K} : separable infinite dimensional Hilbert space. $C, D \in \mathcal{B}(\mathcal{K})$: injective with dense range. $M \subset \mathcal{K}$: linear manifold s.t. $R(D^*) + M = \mathcal{K}$ and $\overline{M} = \mathcal{K}$. $\{f_1, f_2, \cdots, f_n, \cdots\} \subset M$: basis for \mathcal{K} . F_n : projection onto $\forall [f_{n+1}, f_{n+2}, \cdots, f_{n+k}, \cdots], \forall n \in \mathbb{N}.$ $F_n \searrow 0(SOT).$ $\mathcal{H} = \mathcal{K} \oplus \mathcal{K} \oplus \mathcal{K}, B = C \oplus D \oplus D^*.$ $P_n = I \oplus I \oplus F_n \searrow P = I \oplus I \oplus 0.$ $Q_n = I \oplus F_n \oplus I \searrow Q = I \oplus 0 \oplus I.$ $A_n = P_n B Q_n \searrow A = C \oplus 0 \oplus 0.$ Put $B_E = EBQ$, for any projection E < P such that $EP_A \neq P_A E.$ $B_E <^{\diamond} A_n$ for all n. B_E : not comparable with A.

Guoxing Ji

 $\operatorname{Contents}$

Section 1

Section 2

Section 3

Section 4

Thank You!