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1. Forward EPI
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What is entropy?

Let X be a random vector in Rd with density f (w.r.t the Lebesgue
measure). The Shannon-Boltzmann entropy of X is defined as

h(X ) = −
∫
Rn

f (x) log f (x)dx .

One can think of h(X ) as the logarithm of the volume of the ef-
fective support of X . This suggests an informal parallelism between
entropy inequalities of random vectors on the one hand, and cardi-
nality/volume inequalities of sets on the other hand.
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Brunn-Minkowski Inequality (BMI)

Brunn-Minkowski Inequality: Let A and B be nonempty compact
subsets in Rd . We have

|A+B|1/d ≥ |A|1/d + |B|1/d .

Here, | · | and + denote volume and vector sum, respectively. Equal-
ity holds precisely when A and B are homothetic (i.e., equal up to
dilation and translation).

In other words, the Lebesgue measure on Rd is 1/d concave. This
general BMI is due to Lusternik’35.
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Remark

BMI was inspired by issues around the classical isoperimetric prob-
lem. The fundamental geometric content makes BMI a cornerstone
of the Brunn-Minkowski theory.

BMI now consolidates its role as an analytical tool and a compelling
picture has emerged of its relations to other analytical inequalities,
including Prékopa-Leindler inequality, (reverse) Young’s inequality,
(reverse) Brascamp-Lieb inequality, entropy power inequality, etc.
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Entropy power inequality (EPI)

Shannon’48: Let X and Y be independent random vectors in Rd

such that the entropies of X , Y and X +Y exist. We have

e
2
d h(X+Y ) ≥ e

2
d h(X ) + e

2
d h(Y ).

Equality holds if and only if X and Y are Gaussian random vectors
with proportional covariance matrices.

The first complete proof is due to Stam’59.
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Remark

EPI was first used by Shannon to study the fundamental limits of
communication channels. It is now recognized as an extremely useful
inequality in probability theory, convex geometry, functional analysis,
etc. Particularly, EPI implies the log-Sobolev inequality for Gaussian
measures.

EPI for free entropy: Szarek-Voiculescu’96
Quantum EPI: König-Smith’14, Audenaert-Datta-Ozols’16
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Rényi entropy

Let X be a random vector in Rd with density f (w.r.t the Lebesgue
measure). For p ∈ [0,∞], the p-Rényi entropy of X is defined as

hp(X ) =
1

1−p
log

∫
Rn

f (x)pdx .

For p ∈ {0,1,∞}, the definition is understood in the limiting sense:

h1(X ) is the Shannon-Boltzmann entropy

h0(X ) = log |supp(f )|, h∞(X ) = − log∥f ∥∞
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EPI for p-Rényi entropy

Bobkov-Chistyakov’15: Let p> 1. There exists an absolute constant
cp such that for any independent random vectors X1, · · · ,Xn in Rd ,

e
2
d hp(X1+···+Xn) ≥ cp ·

(
e

2
d hp(X1) + · · ·+ e

2
d hp(Xn)

)
.

In particular, one can take cp = p
1

p−1 /e, which decreases from 1 to
1/e.
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EPI for p-Rényi entropy (cont’d)

L.’18: Let X and Y be independent random vectors in Rd such that
X ,Y and X +Y have finite p-Rényi entropy for p > 1. We have

e
αp
d hp(X+Y ) ≥ e

αp
d hp(X ) + e

αp
d hp(Y ),

αp = 2

[
1 +

1

log 2

(
p+ 1

p−1
log

p+ 1

2p
+

logp

p−1

)]−1

.

It improves Bobkov-Marsiglietti’17. We have α0 = 1 and α1 = 2. For
p large, αp is asymptotically optimal up to a multiplicative constant.
It is unknown whether this inequality is sharp.
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Remark

L.-Marsiglietti-Melbourne’19: In general, there are no such EPIs for
Rényi entropy of order 0 < p < 1. One can take random vectors
that are essentially truncations of some random vector with finite
covariance matrix, but infinite p-Rényi entropy. However, we can
establish analogs of Rényi EPIs of order 0 < p< 1 if the distributions
satisfy certain convexity/concavity.
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2. Reverse EPI

13 / 24



Reverse BMI

V. Milman’86: There is an absolute constant c such that for any
convex bodies A and B in Rd one can find volume preserving linear
maps ϕ and ψ such that

|ϕ(A) + ψ(B)|1/d ≤ c · (|A|1/d + |B|1/d).

Milman’s reverse BMI has connections with high dimensional phe-
nomena in convex geometry. Ball’86, Bourgain-Klartag-V. Milman’04:
reverse BMI for convex bodies in isotropic position is equivalent to
Bourgain’s slicing problem.
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Reverse EPI

Bobkov-Madiman’12: There is an absolute constant c such that for
independent log-concave random vectors X and Y in Rd one can
find volume preserving linear maps ϕ and ψ such that

e
2
d h(ϕ(X )+ψ(Y )) ≤ c ·

(
e

2
d h(X ) + e

2
d h(Y )

)
.

One can replace the Shannon-Boltzmann entropy by general p-Rényi
entropies. The selection of ϕ and ψ is related to Bourgain’s slicing
problem.
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Busemann’s intersection body theorem

Busemann’49: The intersection body of a symmetric convex body
is convex.

Intersection body was introduced by Lutwak’88. It plays a key role
in the solution of the Busemann-Petty problem in convex geometry.

Conjecture (Gardner-Giannopoulos’99): The p-cross-section body of
a symmetric convex body is convex.

Busemann’s theorem corresponds to the p = ∞ case.
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A reverse Rényi EPI

G-G conjecture (entropic version): Let (X ,Y ) ∈R2 be a symmetric
log-concave random vector, (X and Y are not necessarily indepen-
dent). We have

ehp(X+Y ) ≤ ehp(X ) + ehp(Y ).

Ball’88: the p = ∞ case.
Ball-Nayar-Tkocz’16: the p = 1 case with an exponent 1/5.
L’18: the p = 2 case, symmetry is not required.
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3. Entropy jump
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Entropy jump

Carlen-Soffer’91: If X is not Gaussian, and X ,Y are i.i.d, then the
entropy of (X +Y )/

√
2 is strictly larger than that of X .

Ball-Barthe-Naor’03, Barron-Johnson’04: If X ,Y satisfy the Poincare
inequality with constant c > 0. Then

h

(
X +Y√

2

)
−h(X ) ≥ c

2 + 2c
(h(G )−h(X )).

Ball-Nguyen’12: extention to log-concave random vectors under
spectral condition.

Entropy jump yields the convergence rate of the entropic CLT.
Ball’03 observed that entropy jump of isotropic log-concave ran-
dom vectors implies Bourgain’s slicing problem.
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Entropy jump (cont’d)

Conjecture (folklore): Let X and Y be i.i.d log-concave random
vectors in Rd . The largest increment h(X +Y )−h(X ) is achieved
by exponential random vectors (the numerical value is γd , where
γ ≈ 0.57 is Euler’s constant).

A (trivial) uppber bound is d log 2. Any improvement of this bound
will find great applications to Hadwiger’s covering problem.

L.-Marsiglietti-Melbourne: analogs hold for p-Rényi entropy of order
p ∈ {0,2,∞}.
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Entropy jump (cont’d)

Conjecture (folklore): Let X and Y be i.i.d log-concave random
vectors in Rd . The largest increment h(X −Y )−h(X ) is achieved
by exponential random vectors (the numerical value is d log 2).

Rogers-Shephard inequality: Let A be a convex body in Rd . Then

|A−A| ≤
(

2d

d

)
|A|.

Equality holds if and only if A is a simplex.

Melbourne-Tkocz’21: analogs hold for Rényi entropy of order p ≥ 2.
L.: a different proof which sheds more light on the optimality of
exponential distribution.
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4. Minimum entropy
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Minimum entropy

It is a well-know fact that Gaussian distribution has the maximum
Shannon-Boltzmann entropy within the class of distributions having
the same covariance matrix.

Conjecture (folklore): Exponential distribution has the minimum
Shannon-Boltzmann entropy within the class of log-concave distri-
butions having the same covariance matrix.

An affirmative answer implies Bourgain’s slicing problem.

Bia lobrzeski-Nayar’21: analogs hold for Rényi etropy of order p ≥ 2
in one-dimension.
L.: a much simpler proof.
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Thanks for your attention!
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