Integrability in Random Matrix Theory. Applications to quantum transport and quantum chaos

Dr. Vladimir Osipov

Science Department,

H.I.T.-Holon Institute of Technology, Israel

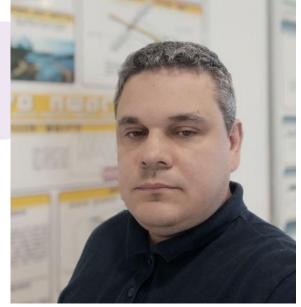
Education

 Department of Theoretical Nuclear Physics Moscow State Engineering-Physics Institute, Russia

(1998) Diploma work: "Emission of a charge moving uniformly parallel to the surface of a non-stationary medium." V.Al.Osipov, M.I.Ryazanov, Laser Physics 8 (1998) 1007

 PhD in Physical and Mathematical Sciences N.N.Semenov Institute of Chemical Physics of the Russian Academy of Sciences, Russia

(2003) Thesis: "p-Adic models of ultrametric diusion and their application to the description of protein conformational dynamics" V.A.Avetisov V.A., A.Kh.Bikulov, S.V.Kozyrev, V.AI.Osipov, J.Phys.A **35** (2002) 177



Working Experience, research

Languages: Russian, English, German, Hebrew

- 1998-2005 Engineer, Researcher at Condensed Matter Physics, Institute of Chemical Physics of the Russian Academy of Sciences (Russia)
- 2005-2008 Postdoctoral Associate at Applied Math. H.I.T. – Holon Institute of Technology (Israel)
- 2008-2011 Research Associate at Physics, Duisburg – Essen University (Germany)
- 2011-2014 Research Associate at Institute of Theoretical Physics, Cologne University (Germany), Excellence university since 2012
- 2014-2015 Distinguished position at *Physics*, Duisburg – Essen University (Germany)
- 2015-2017 Postdoctoral Associate at Chemical Physics, Lund University (Sweden)
- 2018-2019 Associate Specialist at Chemistry, University of California, Irvine (USA)
- 2019- Research Associate at

Physics, H.I.T. – Holon Institute of Technology (Israel)

Research Interests: Mathematical and Theoretical Physics

Mathematical Physics and applications

- Ultrametrisity and models of ultrametric diffusion
- Theory of Random Matrices
- Quantum Chaos
- Quantum Systems with Disorder
- Theory of nonlinear optical systems and Chemical Physics
 - Nonlinear spectroscopy
 - Nanodevices

Integrability in Random Matrix Theory. Applications to quantum transport and quantum chaos

V.Al.Osipov, E.Kanzieper, "Are bosonic replicas faulty?" Phys.Rev.Let. 99 (2007) 050602

V.Al.Osipov, E.Kanzieper, "Integrable theory of quantum transport in chaotic cavities", *Phys.Rev.Let.* **101** (2008) 176804

V.Al.Osipov, E.Kanzieper, "Statistics of thermal to shot noise crossover in chaotic cavities", *J.Phys.A:Math.Theor.* **42** (2009) 475101

V.Al.Osipov, E.Kanzieper, "Correlations of RMT characteristic polynomials and integrability: Random Hermitian matrices", *Annals of Physics* **325** (2010) 2251

V.Al.Osipov, H.-J.Sommers, K.Zyczkowski, "Random Bures matrices and the distribution of their purity", *J.Phys.A:Math.Theor.* **43** (2010) 055302

R.Riser, **V.Al.Osipov**, E.Kanzieper, "Power-spectrum of long eigenlevel sequences in quantum chaology", *Phys.Rev.Let.* **118** (2017) 204101

R.Riser, **V.Al.Osipov**, E.Kanzieper, "Nonperturbative theory of power spectrum in complex systems", *Annals of Physics* **413** (2020) 168065

Integrability in Random Matrix Theory. Applications to quantum transport and quantum chaos

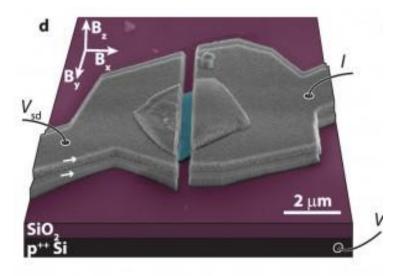
 Random Matrices for description of quantum transport in chaotic cavities.

The Integrable theory of Random Matrices

• Other applications

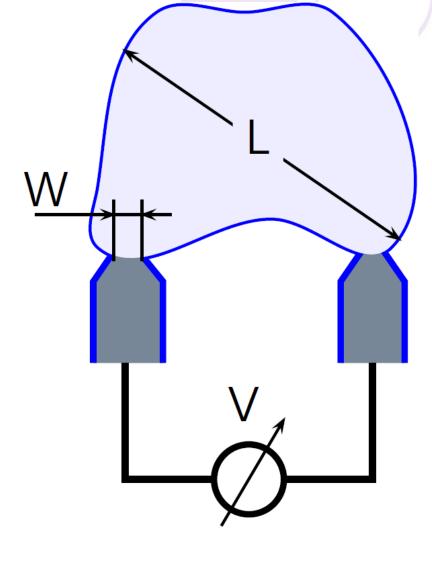
Mesoscopic physics

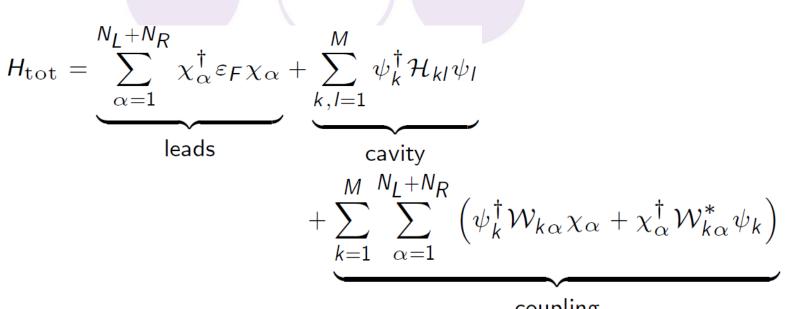
- The system geometric scales is between macroscopic and microscopic (10⁻⁶ m);
- Both the quantum and statistical descriptions are required;
- Significant fluctuations of the observables requires mean value, moments and distributions;
- Conductance **G** is the easiest to measure;
- A universal method of description is of interest.



 $\Delta I = G \Delta V$

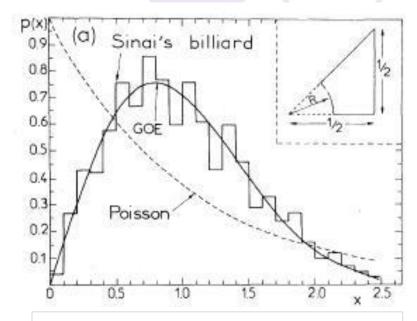
Quantum transport in chaotic cavities





- coupling
- Single electron on the Fermi surface without losses (infinite potential walls)
- Broken time-reversal symmetry: the Hamiltonian is Hermitian
- The cavity is chaotic (the classical billiard of the same shape is chaotic)
- Universal regime: Electron dwell time >> Ehrenfest time (W<<L)

Quantum transport in chaotic cavities Random matrix

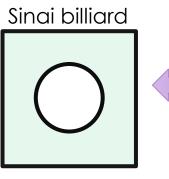


Nearest neighbor density for a (desymmetrized) Sinai billiard, showing that this distribution agrees perfectly well with the Wigner surmise (1956)

$$p(x) = \frac{\pi}{2} x e^{-\frac{\pi}{4}x^2}$$
valid for the Gaussian Orthogonal Ensemble (solid line).

• **Bohigas-Giannoni-Schmit** conjecture (1984):

Hamiltonian of a chaotic system can be replaced by a random matrix of the proper symmetry



N x N random Gaussian Hermitian
matrix (GOE)
$$\mathcal{H}^T = \mathcal{H}$$

 $dP(\mathcal{H}) \propto e^{-\frac{N}{4} \operatorname{Tr} \mathcal{H}^2} d\mathcal{H} = \prod_{i,j}^N e^{-\frac{N}{4} \mathcal{H}_{i,j}^2} d\mathcal{H}_{i,j}$

The distribution of the nearest eigenlevel spacings:

$$p(x) = \left\langle \frac{1}{N} \sum_{j=1}^{N-1} \delta\left(x - (E_{j+1} - E_j)\right) \right\rangle$$

There are many other works were done to support the conjecture.

Quantum transport in chaotic cavities Random scattering matrix

• Scattering matrix connects the amplitudes of incoming quantum waves with the amplitudes of outcoming waves; r – reflection part, t – transmission part

$$\begin{pmatrix} \mathbf{a}_{out}^{(L)} \\ \mathbf{a}_{out}^{(R)} \\ \mathbf{a}_{out}^{(R)} \end{pmatrix} = S \begin{pmatrix} \mathbf{a}_{in}^{(L)} \\ \mathbf{a}_{in}^{(R)} \end{pmatrix} \qquad S = \begin{pmatrix} r & t \\ t' & r' \end{pmatrix} \qquad SS^{\dagger} = \mathbb{1}$$

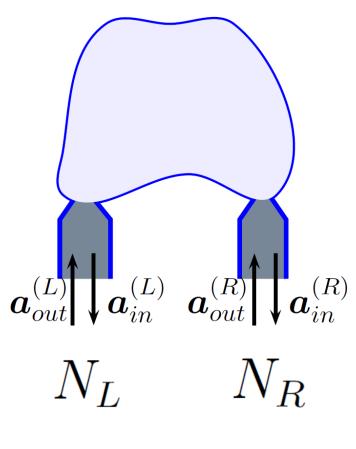
$$S = 1 - 2i\pi W^{\dagger} (\varepsilon_F - \mathcal{H} + i\pi W W^{\dagger})^{-1} W$$

Conductance is transmission (Landauer 1958)

$$g = \text{Tr } tt^{\dagger} = \sum_{j=1}^{n} T_j \qquad n = \min\{N_L, N_R\}$$

Bohigas-Giannoni-Schmit conjecture (1984): The Hamiltonian of a chaotic cavity is replaced by a random matrix drawn from GUE: $\mathcal{H}^{\dagger} = \mathcal{H}$

 Ballistic point contacts: scattering matrix is a random unitary matrix (Blumel, Smilansky 1990), circular unitary ensemble CUE



Quantum transport in chaotic cavities Random matrix integrals

The observable: conductance

$$g = \operatorname{Tr} tt^{\dagger} = \sum_{j=1}^{n} T_j$$

The sought quantity is the moment generation function (Laplace transform of the conductance density)

$$\rho(g) \equiv \left\langle \delta\left(g - \sum_{j=1}^{n} T_{j}\right) \right\rangle = \mathcal{L}^{-1} \big[\mathcal{F}_{n}(z)\big](g)$$

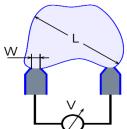
Integrating out the angular degrees of freedom transforms F(z) to the n-fold integral over the transmission coefficients

$$\mathcal{F}_n(z) = \langle \exp(-zg) \rangle_{\mathcal{S} \in \text{CUE}(N_L + N_R)}$$
$$n = \min\{ N_L, N_R \} \quad \nu = |N_L - N_R|$$
$$\mathcal{F}_n(z) = c_n^{-1} \prod_{j=1}^n \left[\int_0^1 e^{-zT_j} T_j^{\nu} dT_j \right] \cdot \prod_{i < j} (T_i - T_j)^2$$

Moment generation function:

$$\mathcal{F}_n(z) = \sum_{\ell=1}^{\infty} (-1)^{\ell} \mathfrak{m}_{\ell} \frac{z^{\ell}}{\ell!}$$

Cumulant generation function: $\log \mathcal{F}_n(z) = \sum_{\ell=1}^{\infty} (-1)^{\ell} \kappa_{\ell} \frac{z^{\ell}}{\ell!}$ Squared Vandermonde determinant



Integrable theory of random matrices Theory of \tau-function $\mathcal{F}_n(z) = c_n^{-1} \prod_{i=1}^n \left[\int_0^1 e^{-zT_j} T_j^{\nu} dT_j \right] \cdot \Delta_n^2 \{ \mathbf{T} \}$

 $\begin{array}{l} \text{Vandermonde determinant}\\ \Delta_n \{ \boldsymbol{T} \} \equiv \prod_{i < j}^n |T_i - T_j| = \det \begin{bmatrix} 1 & T_1 & T_1^2 & \dots & T_1^{n-1} \\ 1 & T_2 & T_2^2 & \dots & T_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & T_n & T_n^2 & \dots & T_n^{n-1} \end{bmatrix} \end{array}$ The matrix integral $\frac{1}{n!} \int_{\mathcal{D}^n} \Delta_n^2 \{ \boldsymbol{T} \} \cdot \prod_{j=1}^n \exp \left[-V[T_j] + \sum_{m=1}^\infty u_m T_j^m \right] dT_j$ is a τ -function that satisfies the Toda-lattice hierarchy and the Kadomtsev-Petviasvili hierarchies.

Adler, van Moerbeke (1995)

Integrable theory of random matrices Theory of τ -function

The matrix integral

$$\frac{1}{n!} \int_{\mathcal{D}^n} \Delta_n^2 \{ \mathbf{T} \} \cdot \prod_{j=1}^n \exp\left[-V[T_j] + \sum_{m=1}^\infty u_m T_j^m \right] dT_j$$

is a τ –function that satisfies the Toda-lattice hierarchy and the Kadomtsev-Petviasvili hierarchies.

Adler, van Moerbeke (1995)

$$\tau \left\{ u_m \right\}_{m=1}^{\infty}$$

 τ - function is a function, which depends on an infinite number of parameters and satisfies an infinite number of relations.

R.Hiroto, M.Sato (1981)

Complete chaos

Infinite number of integrals of motion and infinite number of degrees of freedom.

Complete integrability

The number of degrees of freedom coincide with the number of integrals of motion.

Integrable theory of random matrices Theory of τ-function, Toda lattice

$$\mathcal{F}_n(z) = c_n^{-1} \prod_{j=1}^n \left[\int_0^1 e^{-zT_j} T_j^{\nu} dT_j \right] \cdot \Delta_n^2 \{ \boldsymbol{T} \}$$

Toda lattice hierarchy, the first equation:

$$\mathcal{F}_{n}''(z) = \mathcal{F}_{n}(z) + \operatorname{var}(g) \frac{\mathcal{F}_{n-1}(z)\mathcal{F}_{n+1}(z)}{\mathcal{F}_{n}(z)}$$

Initial conditions:

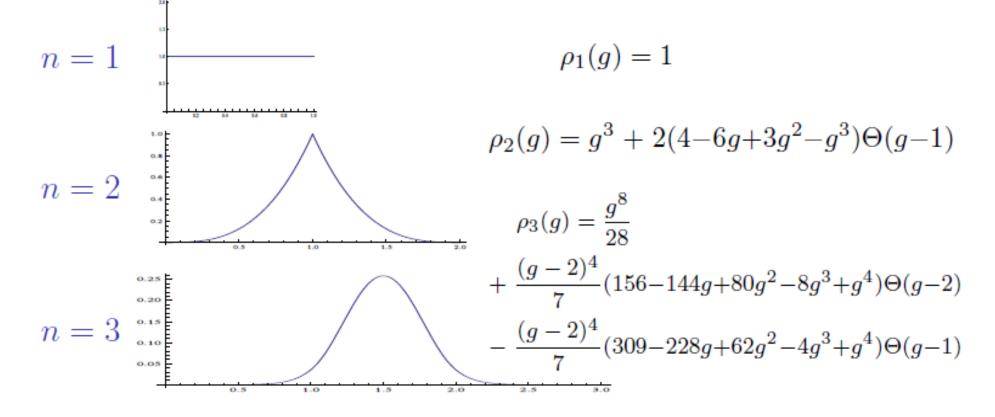
$$\mathcal{F}_{0}(z) \equiv 1;$$

$$\mathcal{F}_{1}(z) = \frac{(\nu+1)!}{z^{\nu+1}} \left(1 - e^{-z} \sum_{\ell=0}^{\nu} \frac{z^{\ell}}{\ell!}\right)$$

One can calculate the conductance density for small n (number of open channels)

$$\rho(g) \equiv \left\langle \delta\left(g - \sum_{j=1}^{n} T_{j}\right) \right\rangle_{\mathbf{T}} = \mathcal{L}^{-1} \big[\mathcal{F}_{n}(z)\big](g)$$

Quantum transport in chaotic cavities Theory of τ -function, Toda lattice



Geometry: two leads with N_L and N_R numbers of propagating modes; Number of open channels: $n = \min \{N_L, N_R\}$;

Asymmetry parameter: $\nu = |N_L - N_R| = 0.$

n/2 –is the mean value of g. The Gaussian approximation is only valid for |g-n/2|<n/4 Quantum transport in chaotic cavities Theory of τ-function, Kadomtsev-Petviashvili

$$\mathcal{F}_n(z, \{\boldsymbol{u}\}) = c_n^{-1} \prod_{j=1}^n \left[\int_0^1 e^{-zT_j + \sum_{m=2}^\infty u_m T_j^m} T_j^\nu dT_j \right] \cdot \Delta_n^2 \{\boldsymbol{T}\}$$

The first equation of Kadomtsev-Petviashvili hierarchy (KP-equation):

$$\left(\frac{\partial^4}{\partial z^4} + 3\frac{\partial^2}{\partial u_2^2} + 4\frac{\partial^2}{\partial z \partial u_3}\right)\log \mathcal{F}_n + 6\left(\frac{\partial^2}{\partial z^2}\log \mathcal{F}_n\right)^2 = 0$$

Projection onto the hyperplane u=0

The projections of the derivatives

$$\frac{\partial}{\partial u_2} \log \mathcal{F}_n \bigg|_{u=0} \qquad \frac{\partial}{\partial u_3} \log \mathcal{F}_n \bigg|_{u=0} \quad \text{are unknown.}$$

The missing block is the Virasoro constraints

Quantum transport in chaotic cavities Virasoro constraints

$$\mathcal{F}_n(z, \{\boldsymbol{u}\}) = c_n^{-1} \prod_{j=1}^n \left[\int_0^1 e^{-zT_j + \sum_{m=2}^\infty u_m T_j^m} T_j^\nu dT_j \right] \cdot \Delta_n^2 \{\boldsymbol{T}\}$$

The Virasoro constraints

The integral is invariant with respect to transformation of the integration measure (the transformation is zero at the boundaries of the integration domain).

$$\mathcal{L}_{q}\mathcal{J}_{n}(\mathcal{Z}, \{\boldsymbol{u}\}) = 0$$

$$q = 0, 1, \dots$$

$$[\mathcal{L}_{p}, \mathcal{L}_{q}] = (p-q)\mathcal{L}_{p+q}$$

$$\hat{\mathcal{L}}_0 = \sum_{m=2}^{\infty} m u_m \left(\frac{\partial}{\partial u_{m+1}} - \frac{\partial}{\partial u_m} \right) - 2z \left(\frac{\partial}{\partial u_2} + \frac{\partial}{\partial z} \right) - (2n+\nu) \frac{\partial}{\partial z} - n(n+\nu)$$

Quantum transport in chaotic cavities Conductance cumulants

$$\mathcal{F}_n(z, \{\boldsymbol{u}\}) = c_n^{-1} \prod_{j=1}^n \left[\int_0^1 e^{-zT_j + \sum_{m=2}^\infty u_m T_j^m} T_j^\nu dT_j \right] \cdot \Delta_n^2 \{\boldsymbol{T}\}$$

The Virasoro constraints + Kadomtsev-Petviashvili projection onto u=0 give rise to the Painleve V

$$\mathcal{F}_n(z, \{ \boldsymbol{u} \}) \Big|_{\boldsymbol{u}=0} = \exp\left(\int_0^z \frac{\sigma_V(x) - n(n+\nu)}{x} dx\right) \qquad \begin{array}{c} \mathsf{R} \\ \mathsf{c} \end{array}$$

Requirement of convergence:

 $\sigma_V(0) = n(n+\nu)$

Painleve V:
$$(x\sigma_V'')^2 + [\sigma_V - x\sigma_V' + 2(\sigma_V')^2 + (2n+\nu)\sigma_V']^2 + 4(\sigma_V')^2(\sigma_V' + n)(\sigma_V' + n + \nu)^2 = 0$$

Moment generation function:

$$\mathcal{F}_n(z) = \sum_{\ell=1}^{\infty} (-1)^{\ell} \mathfrak{m}_{\ell} \frac{z^{\ell}}{\ell!}$$

Cumulant generation function:

$$\log \mathcal{F}_n(z) = \sum_{\ell=1}^{\infty} (-1)^{\ell} \kappa_{\ell} \frac{z^{\ell}}{\ell!}$$

Quantum transport in chaotic cavities **Conductance cumulants**

Geometry of two leads with N_L and N_R number of open modes Number of open channels: $n = \min\{N_L, N_R\}$ Asymmetry parameter: $\nu = |N_L - N_R|$

W

 $j \ge 2: \qquad [(2n+\nu)^2 - j^2] (j+1)\kappa_{j+1} = 2\sum_{k=0}^{j-1} \frac{j!(3\ell+1)(j-\ell)^2}{\ell!(j-\ell)!} \kappa_{\ell+1}\kappa_{j-\ell} - (2n+\nu)(2j-1) j\kappa_j - j(j-1)(j-2) \kappa_{j-1} + j(j-2) \kappa_{j-1} +$ Mean value $\kappa_1 = \frac{n(n+\nu)}{2n+\nu}$ Variance $\kappa_2 = \frac{1}{(2n+\nu)^2 - 1}\kappa_1^2$ $\kappa_3 = -\frac{2\nu^2}{((2n+\nu)^2 - 1)((2n+\nu)^2 - 4)}\kappa_1^2 < 0$ Skewness $\kappa_j = \frac{n}{2}\delta_{j,1} + \frac{1}{16}\delta_{j,2} + \frac{1 + (-1)^j}{8} \frac{(2j-1)!}{(4n)^{2j}} \left[1 + \frac{j(3j^2-1)}{8n^2} + \mathcal{O}\left(\frac{1}{n^4}\right) \right]$ $n \gg 1$ $\nu = 0$ Gaussian part

Integrability in Random Matrix Theory.
Applie

$$\mathcal{F}_n(z) = \langle \exp(-zg) \rangle_{\mathcal{S} \in \text{CUE}(2n+\nu)}$$

 $n = \min\{N_L, N_R\} \quad \nu = |N_L - N_R|$
 $\mathcal{F}(z) = c_n^{-1} \prod_{j=1}^n \left[\int_0^1 e^{-zT_j} T_j^{\nu} dT_j \right] \cdot \prod_{i < j} (T_i - T_j)^2$
Integrable theory

Toda Lattice hierarchy:

Representation in terms of Painleve V transcendent:

$$\mathcal{F}_n(z)\mathcal{F}_n''(z) - (\mathcal{F}_n(z))^2 = \operatorname{var}(g)\mathcal{F}_{n-1}(z)\mathcal{F}_{n+1}(z)$$
$$\mathcal{F}_n(z) = \exp\left(\int_0^z \frac{\sigma_V(x) - n(n+\nu)}{x} dx\right) \quad \sigma_V(0) = n(n+\nu)$$
$$x\sigma_V'')^2 + \left[\sigma_V - x\sigma_V' + 2(\sigma_V')^2 + (2n+\nu)\sigma_V'\right]^2 + 4(\sigma_V')^2(\sigma_V' + n)(\sigma_V' + n+\nu)^2 = 0$$

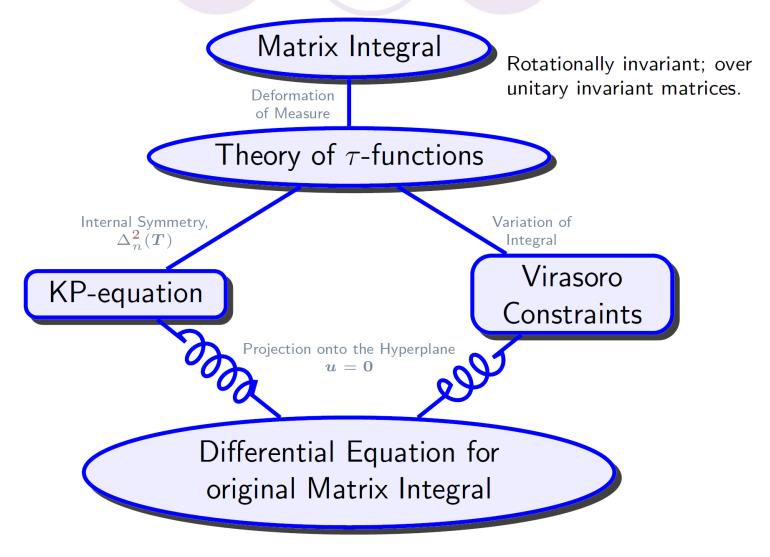
V.Al.Osipov, E.Kanzieper, "Integrable theory of quantum transport in chaotic cavities", Phys. Rev. Let. 101 (2008) 176804

Integrability theory for Random Matrices

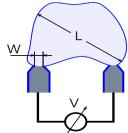
Often the matrix integral is represented in terms of (one of six) Painleve equation due to KP-hierarchy.

The other hierarches (TL) give rise to additional relations

Sometimes the Virasoro constraints are not resolvable.



Quantum transport in chaotic cavities Conductance-shot-noise power joint cumulants



-- The realistic Hamiltonian of the cavity is replaced by a random Hermitian matrix (Bohigas-Giannoni-Schmit conjecture). The scattering matrix is drawn from CUE.

-- The transport characteristics are calculated as an average of the observable over ensemble of random matrices.

The observable: conductance
$$g = \sum_{j=1}^n T_j$$
 and the shot-noise power $p = \eta \sum_{j=1}^n T_j (1-T_j)$

The sought quantity is the joint moment generation function

$$\mathcal{F}_n(z,w) = \left\langle \exp\left(-zg\right) \exp\left(-wp\right) \right\rangle_{\mathcal{S} \in \text{CUE}(2n+\nu)}$$

$$\log \mathcal{F}_n(z,w) = \sum_{\ell=1}^{\infty} (-1)^{\ell+m} \kappa_{\ell,m} \frac{z^{\ell} w^m}{\ell! m!}$$

Quantum transport in chaotic cavities Conductance-shot-noise power joint cumulants

conductance
$$g = \sum_{j=1}^{n} T_{j}$$
 and the shot-noise power $p = \eta \sum_{j=1}^{n} T_{j}(1 - T_{j})$
 $\mathcal{F}_{n}(z, w) \propto \prod_{j=1}^{n} \left[\int_{0}^{1} e^{-zT_{j} - w\eta T_{j}(1 - T_{j})} T_{j}^{\nu} dT_{j} \right] \cdot \Delta_{n}^{2} \{ \mathbf{T} \}$
Integrable theory

$$w\eta^{2} \frac{\partial^{4}}{\partial z^{4}} \log \mathcal{F}_{n}(z,w) + 6w \eta^{2} \left(\frac{\partial^{2}}{\partial z^{2}} \log \mathcal{F}_{n}(z,w)\right)^{2} + 2\left(\frac{\partial}{\partial w} - \frac{\partial}{\partial z}\right) \log \mathcal{F}_{n}(z,w) \\ + \left(\left[2(2n+\nu)\eta - 2z + w\left(1-\eta^{2}\right)\right]\frac{\partial^{2}}{\partial z^{2}} + 2(z-2w)\frac{\partial^{2}}{\partial z\partial w} + 3w\frac{\partial^{2}}{\partial w^{2}}\right) \log \mathcal{F}_{n}(z,w) = 0$$

Quantum transport in chaotic cavities Conductance-shot-noise power joint cumulants conductance $g = \sum_{j=1}^{n} T_j$ and the shot-noise power $p = \eta \sum_{j=1}^{n} T_j (1 - T_j)$ $\log \mathcal{F}_n(z,w) = \sum_{l=1}^{\infty} (-1)^{\ell+m} \kappa_{\ell,m} \frac{z^{\ell} w^m}{\ell! m!}$ Joint cumulant generation function The conductance cumulants are known, they play a role of initial $\kappa_{\ell,0} \equiv \langle\!\langle q^\ell \rangle\!\rangle$ condition for calculation of the shot-noise-power cumulants $\kappa_{0,1} \equiv \langle\!\langle p \rangle\!\rangle = \eta \frac{n(n+\nu)}{2n+\nu} \left| 1 + \frac{n(n+\nu)}{(2n+\nu)^2 - 1} \eta \right|$ Mean value $\kappa_{0,2} \equiv \langle\!\langle p^2 \rangle\!\rangle = \frac{\eta^2}{15} \left[2(2n+\nu)^2 \eta^2 \,\kappa_{4,0} + 15(2n+\nu)\eta \,\kappa_{3,0} + \left(15+3\eta^2\right) \,\kappa_{2,0} - 3\eta^2 (6\kappa_{2,0}^2 + \kappa_{4,0}) \right]$ Variance $n \gg 1 \quad \nu = 0 \qquad \kappa_{0,m} \equiv \langle\!\langle p^m \rangle\!\rangle \simeq \eta^m \left| 2n \left(1 + \frac{\eta}{4} \right) \delta_{m,1} + \left(1 + \frac{\eta^2}{8} \right) \delta_{m,2} + \frac{(m-1)!}{8n^m} \left[\left(\frac{\eta}{2} - 1 \right)^m + \left(\frac{\eta}{2} + 1 \right)^m \right] \right|$ Gaussian part

V.Al.Osipov, E.Kanzieper, "Statistics of thermal to shot noise crossover in chaotic cavities", J.Phys.A:Math.Theor. 42 (2009) 475101

Averaged characteristic polynomials

The averaged characteristic polynomials appear in SUSY

$$\Pi_n(\{\varepsilon_{\alpha};\kappa_{\alpha}\}_{\alpha=1}^p) \equiv \left\langle \prod_{\alpha=1}^p \det^{\kappa_{\alpha}} [\varepsilon_{\alpha} - \mathcal{H}] \right\rangle_{\mathcal{H}_{n \times n}}$$

The averaging is taken over ensemble of random Hermitian matrices with the Gaussian probability measure (GUE)

$$\langle \bullet \rangle_{\mathcal{H}} = c_n^{-1} \int_{\mathcal{H}^{\dagger} = \mathcal{H}} (\bullet) \ e^{-\operatorname{Tr} \mathcal{H} \mathcal{H}^{\dagger}} \prod_{j=1}^n d\mathcal{H}_{jj} \prod_{j < k}^n d\mathcal{H}_{jk}^{\operatorname{Re}} d\mathcal{H}_{jk}^{\operatorname{Im}}$$

Integrable theory

$$\left[\hat{\mathcal{B}}_{-1}^{4} + 8(n-\kappa)\hat{\mathcal{B}}_{-1}^{2} - 4(2\hat{\mathcal{B}}_{0} - 3\hat{\mathcal{B}}_{0}^{2} + 4\hat{\mathcal{B}}_{1}\hat{\mathcal{B}}_{-1})\right]\log\Pi_{n} + 6\left(\hat{\mathcal{B}}_{-1}^{2}\log\Pi_{n}\right)^{2} = 8n\kappa$$

$$\kappa = \sum_{\alpha=1}^{p} \kappa_{\alpha} \qquad \qquad \hat{\mathcal{B}}_{q} \equiv \sum_{\alpha=1}^{p} \varepsilon_{\alpha}^{q+1} \frac{\partial}{\partial \varepsilon_{\alpha}}$$

V.Al.Osipov, E.Kanzieper, "Correlations of RMT characteristic polynomials and integrability: Random Hermitian matrices", Annals of Physics 325 (2010) 2251

Averaged characteristic polynomials

$$\Pi_n \left(\left\{ \varepsilon_{\alpha}; \kappa_{\alpha} \right\}_{\alpha=1}^p \right) \equiv \left\langle \prod_{\alpha=1}^p \det^{\kappa_{\alpha}} \left[\varepsilon_{\alpha} - \mathcal{H} \right] \right\rangle_{\mathcal{H}_{n \times n}}$$

Integrable theory

Multidimensional Painleve equation (?):

$$\begin{bmatrix} \hat{\mathcal{B}}_{-1}^4 + 8(n-\kappa)\hat{\mathcal{B}}_{-1}^2 - 4(2\hat{\mathcal{B}}_0 - 3\hat{\mathcal{B}}_0^2 + 4\hat{\mathcal{B}}_1\hat{\mathcal{B}}_{-1}) \end{bmatrix} \log \Pi_n + 6\left(\hat{\mathcal{B}}_{-1}^2\log \Pi_n\right)^2 = 8n\kappa$$
$$\kappa = \sum_{\alpha=1}^p \kappa_\alpha \quad \hat{\mathcal{B}}_q \equiv \sum_{\alpha=1}^p \varepsilon_\alpha^{q+1} \frac{\partial}{\partial \varepsilon_\alpha}$$

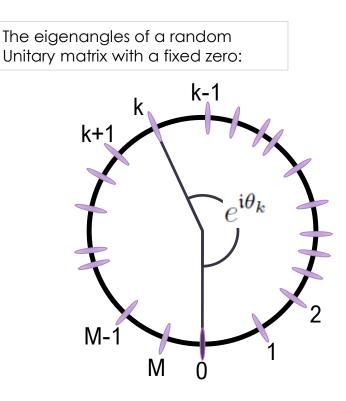
For a single determinant model it reduces to Painleve IV:

$$\Pi_n(\varepsilon:\kappa) = \langle \det^{\kappa} [\varepsilon - \mathcal{H}] \rangle_{\mathcal{H}_{n \times n}}$$
$$\phi''' + 6(\phi')^2 - 4(\varepsilon^2 - 2(n-\kappa))\phi' + 4\varepsilon\phi - 8n\kappa = 0 \qquad \phi = \frac{\partial}{\partial\varepsilon} \log \Pi_n(\varepsilon;\kappa)$$

V.Al.Osipov, E.Kanzieper, "Correlations of RMT characteristic polynomials and integrability: Random Hermitian matrices", Annals of Physics 325 (2010) 2251

Random Matrix Theory. Power spectrum of a chaotic system

• Power spectrum of a quantum chaotic system is expressed in terms of Painleve transcendent equation and behaves differently than 1/f-noise as it has been assumed earlier.



The Joint Probability Density Function (Tuned CUE):

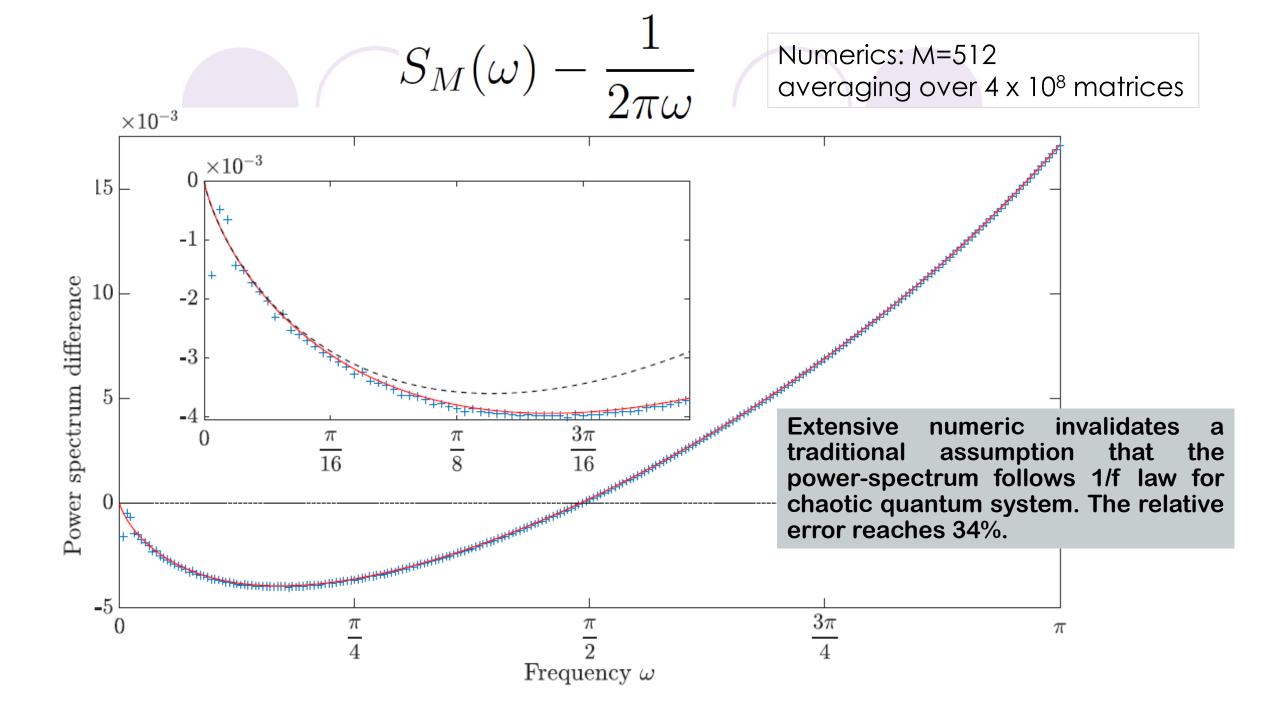
$$P_{M}(\boldsymbol{\theta}) = \frac{1}{M!} \prod_{k < \ell} \left| e^{i\theta_{\ell}} - e^{i\theta_{k}} \right|^{2} \cdot \prod_{\ell=1}^{M-1} \left| 1 - e^{i\theta_{\ell}} \right|^{2}$$
Power spectrum: $\delta\theta_{k} = \theta_{k} - \langle \theta_{k} \rangle$

$$S_{M}(\omega) = \frac{M}{4\pi^{2}} \sum_{\ell=1}^{M-1} \sum_{k=1}^{M-1} \langle \delta\theta_{\ell} \delta\theta_{k} \rangle e^{i\omega(\ell-k)}$$
Integrable theory

The power spectrum is expressed in terms of Painleve VI

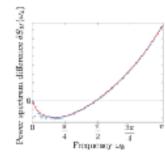
The large-M asymptotic through Painleve V

R.Riser, **V.Al.Osipov**, E.Kanzieper, "Power-spectrum of long eigenlevel sequences in quantum chaology", *Phys.Rev.Let.* **118** (2017) 204101 R.Riser, **V.Al.Osipov**, E.Kanzieper, "Nonperturbative theory of power spectrum in complex systems", *Annals of Physics* **413** (2020) 168065





We are pleased to inform you that the Letter

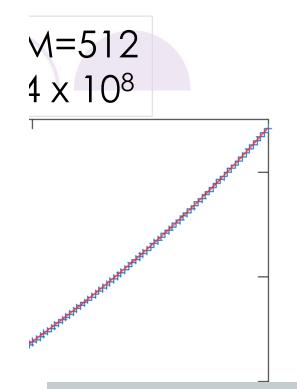


Power spectrum of long eigenlevel sequences in quantum chaotic systems

Roman Riser, Vladimir Al. Osipov, and Eugene Kanzieper Phys. Rev. Lett. 118, 204101 (2017)

Published 16 May 2017

has been highlighted by the editors as an Editors' Suggestion. Publication of a Letter is already a considerable achievement, as *Physical Review Letters* accepts fewer than 1/4 of submissions, and is ranked first among physics and mathematics journals by the Google. Scholar five-year h-index. A highlighted Letter has additional significance, because only about one Letter in six is highlighted as a Suggestion due to its particular importance, innovation, and broad appeal. Suggestions are downloaded twice as often as the average Letter, and are covered in the press substantially more often. If Suggestions were a separate publication, they would have an Impact Factor of 13. More information about our journal and its history can be found on our webpage prl.aps.org.



Extensive numeric invalidates a traditional assumption that the power-spectrum follows 1/f law for chaotic quantum system. The relative error reaches 34%.

 π π 4

Yours sincerely,

Random Matrix Theory. Applications to quantum transport and quantum chaos

The achievement has been reflected in press-relies of H.I.T and Lund University and in scientific mass-media: http://www.hit.ac.il/sciences/news events/KanzieperResearchQuantum http://www.lu.se/article/ekvation-satter-ngret-pa-kaos https://futurism.com/new-equation-explains-quantum-chaos

	New Equation Explains Qu		
	We just found a new language for chaos t	heory.	
	CHELSEA GOHD SEPTEMBER 4TH 2017	<u> </u>	
/ Futurism	News / Chaos Theory / Jeff Goldblum / Quantum Chaos		
/ The Byte			
/ Neoscope	Chaotic Equations		
+ Videos	Jeff Goldblum's character (the	Theoretical But Practical	
+ Newsletter	awareness to the general conc	According to Vladimir Osipov, a researcher at Lund University's Faculty	
+ Social	highly-sensitive systems, able	study authors, "In chaotic quantum systems, the energy levels repel each	
	And, while enigmatic in many	other even if they are far apart."	
Topics	equation that answers the que		
Search		Scientists can now concerns the chartic behavior described by the met	

Scientists can now represent the chaotic behavior described by the math in a quantum system with perfect accuracy: "Yes, we now have an exact equation. Personally, I am actually surprised that it was

Thank youתודה רבהגודה רבהגודה רבהגודה רבה

