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1. Introduction

• The principle of superposition is a

fundamental feature of quantum mechanics.

• Coherence arises form superposition, and is

pivotal for quantum information processing.

• Coherece and decoherence are relative to

measurement.



Quantum measurement:

• observable

• von Neumann measurement

• Lüders measurement

• quantum operation (channel, or positive

operator valued measure)



Intimately related to measurements are:

• uncertainties of measuring results

• coherence of quantum states

Problem:

What are the interrelations between

coherence and uncertainty?



We will make, and elaborate on, the

following identification:

Coherence = Quantum Uncertainty

S. Luo and Y. Sun, Quantum coherence versus

quantum uncertainty, Phys. Rev. A 96, 022130

(2017)



Coherence
of

State

Quantum
Uncertainty

of
Measurement

State
Measurement

Coherence of ρ (w.r.t. M)
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2. Coherence

In recent years, flurry of interests in the

quantification issues of coherence:

• Åberg, Quantifying superposition, arXiv:

0612146v1 (2006)

• Levi and Mintert, A quantitative theory of

coherent delocalization, New J. Phys. 16, 033007

(2014)

• Baumgratz et al., Quantifying coherence,

Phys. Rev. Lett. 113, 140401 (2014)

• · · · · · ·



Several important quantifiers of coherence:

• relative entropy of coherence (coherence

cost)

• coherence formation

• robustness of coherence

• lp-norm coherence

• distance based coherence

• · · · · · ·



Resource theoretic perspective of coherence,

in analogy to that of entanglement, has also

been established.

A. Winter and D. Yang, Operational resource

theory of coherence, Phys. Rev. Lett. 116, 120404

(2016)



All these approaches are based on the

notions of incoherent operations, which have

many species such as
• maximally incoherent operations
• incoherent operations
• physically incoherent operations
• strictly incoherent operations
• genuinely incoherent operations
• dephase covariant operations
• translation invariant operations
• energy preserving operations

• · · · · · ·



These diversities complicate the issue, and

most of them are actually not free of

coherence when implemented via ancillaries.

Another severe, neither necessary nor

desirable, restriction of existent coherence

measures lies in the reference bases, which

are always taken as orthonormal bases, or

equivalently, von Neumann measurements.



In both theoretical and practical

investigations, it is necessary to consider:

coherence w.r.t. general positive operator

valued measures.



We will take a direct approach to coherence

quantification via quantum uncertainty,

which in turn is quantified via average

quantum Fisher information.

We will elucidate that this viewpoint

captures the essence of, leads to interesting

implications for, and sheds considerable

lights on, coherence.



3. Quantum Uncertainty

Given an observable A and a quantum state

ρ, the variance

V (ρ,A) = trρA2 − (trρA)2

is a fundamental quantity representing the

total uncertainty of A in ρ, which may be

formally decomposed into a classical part and

a quantum part as:

V (ρ,A) = C (ρ,A) + Q(ρ,A).



These two kinds of uncertainties are

postulated to satisfy the following intuitive

requirements:

(1). Q(ρ,A) is convex in ρ. In contrast, the

classical uncertainty C (ρ,A) is concave in ρ.

(2). When ρ is pure, V (ρ,A) = Q(ρ,A) and

C (ρ,A) = 0. There is no classical mixing and

all uncertainties are quantum for any pure

state.



(3). When ρ commutes with A, Q(ρ,A) = 0

and C (ρ,A) = V (ρ,A) because in this

situation, ρ and A can be diagonalized

simultaneously and thus behave like classical

variables. Consequently there is no quantum

uncertainty of A in ρ.



There is no unique choice of Q(ρ,A), and

depending on the context and problems, one

may make different choices.

Based on the quantum estimation theory, it

is natural to take quantum Fisher information

as a measure of quantum uncertainty.

S. Luo, Classical versus quantum uncertainty,

Theor. Math. Phys. 151, 693 (2007)



Now for any measurement mathematically

represented by a positive operator valued

measure (POVM)

M = {Mi : i = 1, 2, · · · ,m} with

Mi ≥ 0,
∑

i Mi = 1, its action on a quantum

state results in a post-measurement state

M(ρ) =
∑

i

√
Miρ
√
Mi in the non-selective

case, and a post-measurement ensemble

{ρi = 1
pi

√
Miρ
√
M i , pi = trρMi} in the

selective case.



We define the total uncertainty of the

measurement M in ρ as

V (ρ,M) =
∑

i V (ρ,Mi).



In order to extract the quantum part, we

define the quantum uncertainty of the

measurement M in ρ as

Q(ρ,M) =
∑
i

F (ρ,Mi),

which indeed meets the above requirements.

Here F (ρ,Mi) is a version of quantum Fisher

information of ρ w.r.t. Mi .



There are infinitely many versions of

quantum Fisher information, among which

two prominent ones are defined via

symmetric logarithmic derivative and

commutator, respectively. The latter

corresponds to the Wigner-Yanase skew

information

I (ρ,A) := −1

2
tr[
√
ρ,A]2.



Meaning of skew information:

• Information content of ρ skew to A

• Non-commutativity between A and ρ

• Quantum Fisher information of ρ w.r.t. a

parameter conjugate to A

• Quantum uncertainty of A in ρ

• Coherence of ρ w.r.t. A

• Asymmetry of ρ w.r.t. A

All these indicate that skew information is a

significant and versatile quantity.



4. Coherence as Quantum Uncertainty

Measure of quantum uncertainty of

M = {Mi} in ρ:

Q(ρ,M) =
m∑
i=1

I (ρ,Mi).

Here the measurement M plays an active

role, while the state ρ plays a passive role

(i.e., serves as a background reference).



Taking a dual point of view, we regard the

state ρ as active, and the measurement M as

passive, and interpret this quantity as

coherence of ρ w.r.t. M .

We remark that in the present context, there

is no natural notions for incoherent states or

incoherent operations.

It turns out that Q(ρ,M) is indeed a bona

fide measure for coherence, as consolidated

by the following properties.



• The coherence is nonnegative, and

vanishes if and only if ρ commutes with

every Mi , i.e., Q(ρ,M) ≥ 0, and the minimal

value 0 is achieved if and only if [ρ,Mi ] = 0.

• The coherence Q(ρ,M) is convex in ρ,

that is,

Q
(∑

j

cjρj ,M
)
≤
∑
j

cjQ(ρj ,M)

where cj ≥ 0,
∑

j cj = 1, and ρj are quantum

states.



• The coherence Q(ρ,M) is unitary

covariant in the sense that

Q(UρU†,UMU†) = Q(ρ,M) for any unitary

operator U . Here UMU† = {UMiU
†}.

• The coherence Q(ρ,M) is decreasing

under partial trace in the sense that

Q(ρab,Ma ⊗ 1b) ≥ Q(ρa,Ma).

Here ρab is a bipartite state, Ma = {Ma
i } is a

measurement on party a.



• The coherence Q(ρ,M) is decreasing, i.e.,

Q(ρ,M) ≥ Q(Φ(ρ),M) under any quantum

operation Φ which does not disturb the

measurement M (in the technical sense that

Φ†(
√
Mi) =

√
Mi , Φ†(Mi) = Mi for all i).



We emphasize that the present coherence

measure is fundamentally different from

existent measures of coherence:

• While previous coherence measures are

w.r.t. to a fixed orthonormal base

(equivalently, von Neumann measurement),

here the coherence measure is more general,

since it is constructed w.r.t. any quantum

measurement. It is necessary to go beyond

von Nuemann measurements in many

situations.



• We do not rely on the notions of the

so-called incoherent operations, which are

very subtle and complicated.

• Unlike many other measures of coherence,

here optimization is not involved.



We now sketch the proof of the last property.

First, under the non-disturbance conditions,

it follows that I (Φ(ρ),Mk) ≤ I (ρ,Mk). To

establish this, define the affinity:

A(ρ, τ ) := tr
√
ρ
√
τ .



Consider the von Neumann-Landau equation

i
∂

∂t
ρt = [Mk , ρt], ρ0 = ρ,

then A(ρt, ρ) = 1− I (ρ,Mk)t2 + o(t2) for

sufficiently small t. Similarly, due to the

non-disturbance condition, Φ(ρt) satisfies the

same equation with generator Mk and initial

condition Φ(ρt)|t=0 = Φ(ρ), and thus

A(Φ(ρt),Φ(ρ)) = 1− I (Φ(ρ),Mk)t2 + o(t2)

for sufficiently small t.



Now by the monotonicity of affinity, we have

A(Φ(ρt),Φ(ρ)) ≥ A(ρt, ρ0)

which implies

I (Φ(ρ),Mk) ≤ I (ρ,Mk).

Summing these inequalities w.r.t. k yields

the desired result.



Example

In order to illustrate quantum coherence

w.r.t a general measurement, consider

ρ = |ψ〉〈ψ| with |ψ〉 = 1√
2
(|0〉 + |1〉), which

is maximally coherent w.r.t. the standard

base in an intuitive sense. Now consider the

measurement M = {Mi : i = 1, 2} with

M1 = γ|0〉〈0| + (1− γ)|1〉〈1|,

M2 = (1− γ)|0〉〈0| + γ|1〉〈1|
where γ ∈ [0, 1] is a parameter.



Then direct evaluation shows that

Q(ρ,M) = 2
(
γ − 1

2

)2

,

which

• vanishes when γ = 1
2, and

• achieves the maximum value 1
2 when γ = 0

or 1.

Hence by adjusting γ, quantum coherence

can take any value between 0 and 1
2.



In many situations of probing (measuring) a

quantum state, it is crucial to take a

judicious trade-off between extracting

information (which causes decoherence) and

maintaining coherence, and general

measurements beyond von Neumann

measurements are necessary.



We recall that the most general state

changes can be described by quantum

operations with Kraus representations:

Φ : ρ→ {(pi , ρi) : i ∈ I},

which send an initial state to a quantum

ensemble with ρi = 1
pi

∑
k AikρA

†
ik ,

pi = tr
∑

k AikρA
†
ik ,
∑

ik A
†
ikAik = 1, i.e., the

measurement yields the outcome labeled by i

with probability pi , with the resulting

post-measurement state ρi .



In this situation, how to define quantum

uncertainty of this state change?

Equivalently, how to define coherence of a

state w.r.t. the most general measurement

Φ?



This is an important and subtle issue. First,

there is a corresponding POVM

M = {Mi : i ∈ I} with Mi =
∑

k A
†
ikAik , and

if we employ this measurement M to define

the quantum uncertainty of Φ, we are

reduced to the POVM case. However, it

seems that such an approach misses many

some intrinsic characteristics of Φ since the

Kraus operators Aik may not be Hermitian. It

is desirable to extend the previous formalism

and results to this general case, which is left

as an open issue for further investigations.



• Specifying to Lüders Measurements

Consider a system with Hilbert space H . Let

Π = {Πi : i = 1, 2, · · · ,m} be a Lüders

measurement. This is equivalent to a direct

sum decomposition:

H =
⊕
i

Hi

with Πi corresponding to the orthogonal

projection onto the subspace Hi = ΠiH .



In particular, when all Πi are

one-dimensional, we have a von Neumann

measurement, which is equivalent to an

orthonormal base for H .



For the Lüders measurement Π = {Πi}, the

coherence has the following further nice

properties.

• Q(ρ,Π) can be alternatively expressed as

Q(ρ,Π) =
∑
i 6=j

tr
√
ρΠi
√
ρΠj

which is reminiscent of off-diagonal elements

and interference, the characteristic features

of coherence.



• Q(ρ,Π) has the direct sum property in the

sense that

Q
(⊕

i

λiσi ,Π
)

=
∑
i

λiQ(σi ,Π).

where λi ≥ 0,
∑

i λi = 1, and σi are

quantum states on Hi (thus a priori are

quantum states on H).



• Q(ρ,Π) has the following tensor product

property:

1− Q(ρa ⊗ ρb,Πab)

= (1− Q(ρa,Πa))(1− Q(ρb,Πb)),

where ρab is a bipartite state shared by

parties a and b, Πa = {Πa
i } and Πb = {Πb

j }
are Lüders measurements on parties a and b,

respectively, and Πab = {Πa
i ⊗ Πb

j }.



5. Maximal, Minimal, and Average Coherence

In general, Q(ρ,Π) should be regarded as a

functional of both ρ and Π.

Maximal coherence:

Qmax(ρ) = max
Π

Q(ρ,Π)

Clearly, Qmax(ρ) = maxU Q(ρ,UΠU†) where

U is unitary.



It is natural to expect that Qmax(ρ) should be

a measure of quantum information content,

or quantum purity, of ρ. Indeed, we have

Qmax(ρ) =
1

n

n2∑
j=1

I (ρ,Xj) = 1− 1

n
(tr
√
ρ)2

where {Xi} is an ONB for L(H) (operators

on H with 〈A|B〉 = trA†B), and n = dimH .

This indicates that quantum purity may be

interpreted as maximal coherence.



When the worst cases are relevant, one may

be interested in the minimal coherence

Qmin(ρ) = min
Π

Q(ρ,Π).

In particular, quantum discord may be

interpreted as the minimal coherence, with

minimization over all local von Neumann

measurements.



To illustrate this, consider a bipartite state

ρab shared by two parties a and b, and let

Πa = {Πa
i } be a von Neumann measurement

on party a, then Πa ⊗ 1b = {Πa
i ⊗ 1b} is a

Lüders measurement on the combined

system ab.



The geometric discord

DH(ρab) := min
Πa

tr(
√
ρab−(Πa⊗1b)(

√
ρab))2

quantifies quantum correlations (w.r.t. party

a) in ρab, where

(Πa⊗1b)(
√
ρab) =

∑
i

(Πa
i⊗1b)

√
ρab(Πa

i⊗1b).

On the other hand,

minΠa Q(ρab,Πa ⊗ 1b) = DH(ρab).

Thus the geometric discord is precisely the

minimal coherence.



Intermediate between maximal and minimal

coherence is the average coherence

Qave(ρ) =

∫
U
Q(UρU†,Π)dU .

Here the integration is w.r.t. the Haar

measure on the group of unitary operators.

The explicit evaluation of the integral

remains to be investigated.



The coherence measure Q(ρ,Π) should be

compared with the K -coherence I (ρ,K ),

which violates the important axiom for

monotonicity. Q(ρ,Π) satisfies the

monotonicity.

D. Girolami, Observable measure of quantum

coherence in finite dimensional systems, Phys. Rev.

Lett. 113, 170401 (2014).

S. Luo, Y. Sun, Partial coherence with application

to the monotonicity problem of coherence involving

skew information, Phys. Rev. A 96, 022136 (2017)



6. Summary

In contrast to the resource theoretic

approach to coherence, we have

• introduced a direct and intuitive approach

to coherence by identifying quantum

uncertainty and coherence,

• have defined the corresponding coherence

measure via quantum Fisher information.



The coherence measure is defined, without

reference to incoherent operations, in a more

broad framework involving general positive

operator valued measures rather than

orthonormal bases corresponding to von

Neumann measurements, and it enjoys

several desirable and intuitive properties.



In particular, we are led to corroborate the

following formal identifications:

• Quantum Uncertainty ∼ Coherence

• Quantum purity ∼ Maximal Coherence

• Quantum Discord ∼ Minimal Coherence



A lot of important questions call for further

investigations including

• foundational implications,

• operational significance,

• resource theoretic connection, and

• experimental usage

of the ideas and results illustrated here.

Thank you!


